【題目】如圖,在三棱錐中,,,為中點.
(1)求證:平面;
(2)若點是棱的中點,求異面直線與的夾角.
【答案】(1)見解析;(2).
【解析】
(1)由等腰三角形三線合一得出,連接,計算出三邊邊長,利用勾股定理證明出,然后利用直線與平面垂直的判定定理可得出平面;
(2)取中點,中點,連接、、、,由中位線的性質(zhì)可得出,,由此可得出異面直線與所成的角為或其補角,然后計算出三邊邊長,利用余弦定理求出,即可得出答案.
(1),為的中點,,且.
連接,,,,.
且有,.
,,
,、平面,平面;
(2)取中點,中點,連接、、、,
、分別為、的中點,,且.
,且,
為的中點,則.
又為的中點,,且.
所以,異面直線與所成的角為或其補角.
平面,平面,,
易知,且.
在中,點是斜邊的中點,則.
在中,,,.
由余弦定理得.
因此,異面直線與所成的角為.
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;
(2)設是定義在上的“類函數(shù)”,求是實數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件,為激發(fā)大家的學習興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動,這款軟件的激活碼為下列數(shù)學問題的答案:已知數(shù)列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一項是,接下來的兩項是,再接下來的三項是,……,以此類推,求滿足如下條件的最小整數(shù)且該數(shù)列的前項和為2的整數(shù)冪,那么該軟件的激活碼是________。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩個函數(shù)在公共定義域上恒有,則稱這兩個函數(shù)是該區(qū)間上的“同步函數(shù)”.
(1)試判斷與是否為公共定義域上的“同步函數(shù)”?
(2)已知函數(shù)與是公共區(qū)域上的“同步函數(shù)”,求實數(shù)的取值范圍;
(3)已知與在上是“同步函數(shù)”,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左、右兩個焦點分別為設,若為正三角形且周長為.
(1)求橢圓的標準方程;
(2)若過點且斜率為的直線與橢圓相交于不同的兩點,是否存在實數(shù)使成立,若存在,求出的值,若不存在,請說明理由;
(3)若過點的直線與橢圓相交于不同的兩點兩點,記的面積記為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,函數(shù).
(1)若,求的反函數(shù);
(2)求函數(shù)的最大值(用表示);
(3)設,若對任意,恒成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列與滿足.
(1)若,求數(shù)列的通項公式;
(2)若且數(shù)列為公比不為1的等比數(shù)列,求q的值,使數(shù)列也是等比數(shù)列;
(3)若且,數(shù)列有最大值M與最小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記為數(shù)列的前項和.“任意正整數(shù),均有”是“為遞增數(shù)列”的
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù)(其中)
(1)求實數(shù)m的值;
(2)已知關于x的方程在區(qū)間上有實數(shù)解,求實數(shù)k的取值范圍;
(3)當時,的值域是,求實數(shù)n與a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com