精英家教網 > 高中數學 > 題目詳情
6.給出下列說法:①數據x1,x2,…,xn與x1+1,x2+1,…,xn+1的方程一樣;②線性回歸方程y=bx+a必過點$({\overline x,\overline y})$;③任意兩個復數均無法比較大小.其中錯誤的個數為( 。
A.0B.1C.2D.3

分析 ①,數據x1,x2,…,xn與x1+1,x2+1,…,xn+1的波動幅度一樣,故方差一樣;
②,線性回歸方程y=bx+a必過點散點圖的中心$({\overline x,\overline y})$;
③,任意兩個復數均無法比較大;

解答 解:對于①,數據x1,x2,…,xn與x1+1,x2+1,…,xn+1的波動幅度一樣,故方差一樣,∴①正確;
對于②,線性回歸方程y=bx+a必過點散點圖的中心$({\overline x,\overline y})$,故正確;
對于③,兩個復數均為實數時可以比較大小,故錯;
故選:B

點評 本題考查了命題真假的判定,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.已知雙曲線E:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一條漸近線過點(1,-1),則E的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.下列關系正確的是(  )
A.{1}∈{1,2,3}B.{1}?{1,2,3}C.{1}?{1,2,3}D.{1}={1,2,3}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=log2(2x)•log2(4x),g(t)=$\frac{f(x)}{t}$-3,其中t=log2x(4≤x≤8).
(1)求f($\sqrt{2}$)的值;
(2)求函數g(t)的解析式,判斷g(t)的單調性并用單調性定義給予證明;
(3)若a≤g(t)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知△ABC的三內角A,B,C,所對三邊分別為a,b,c,sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,若△ABC的面積S=24,b=10,則a的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知函數$f(x)=a-\frac{2}{{{2^x}+1}}(a∈R)$是奇函數.
(1)求a的值;
(2)判斷函數f(x)的單調性,(不需證明)
(3)若對任意的t∈R,不等式f(kt2+2)+f(t2-tk)>0恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.(Ⅰ) 在圓x2+y2=4上任取一點P,過點P作x軸的垂線段,D為垂足,當P在圓上運動時,求線段PD的中點Q的軌跡方程;
(Ⅱ)記(Ⅰ)中的軌跡為曲線為C,斜率為k(k≠0)的直線l交曲線C于M(x1,y1),N(x2,y2)兩點,記直線OM,ON的斜率分別為k1,k2,當3(k1+k2)=8k時,證明:直線l過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.設0<x<1,a,b都為大于零的常數,則$\frac{{a}^{2}}{x}$+$\frac{^{2}}{1-x}$的最小值為( 。
A.(a-b)2B.(a+b)2C.a2b2D.a2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.定義平面向量的一種運算:$\overrightarrow{a}$?$\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|sin$<\overrightarrow{a},\overrightarrow$>,給出下列命題:
①$\overrightarrow{a}$?$\overrightarrow$=$\overrightarrow$?$\overrightarrow{a}$;
②λ($\overrightarrow{a}$?$\overrightarrow$)=($λ\overrightarrow{a}$)?$\overrightarrow$;
③($\overrightarrow{a}+\overrightarrow$)?$\overrightarrow{c}$=($\overrightarrow{a}$?$\overrightarrow{c}$)+($\overrightarrow$?$\overrightarrow{c}$);
④若$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2);則$\overrightarrow{a}$?$\overrightarrow$=|x1y2-x2y1|.
其中所有不正確命題的序號是①④.

查看答案和解析>>

同步練習冊答案