(1)將圓心角為120°,面積為3π的扇形,作為圓錐的側(cè)面,求圓錐的表面積和體積;
(2)在△ABC中,滿足:
AB
AC
,|
AB
|=|
AC
|,求向量
AB
+2
AC
與向量2
AB
+
AC
的夾角的余弦值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:平面向量及應(yīng)用,空間位置關(guān)系與距離
分析:(1)先求出圓錐的母線以及底面半徑,再計(jì)算S表面積與體積V;
(2)根據(jù)題意,通過數(shù)量積求出兩向量夾角的余弦值.
解答: 解:(1)設(shè)扇形的半徑和圓錐的母線都為l,圓錐的半徑為r,則
120
360
πl(wèi)2=3π,得l=3;
3
×3=2πr,得r=1;
∴S表面積=S側(cè)面+S底面=πrl+πr2=4π,
∴V=
1
3
Sh=
1
3
×π×12×2
2
=
2
2
3
π.
(2)設(shè)向量
AB
+2
AC
與向量2
AB
+
AC
的夾角為θ,則
cosθ=
(
AB
+2
AC
)•(2
AB
+
AC
)
|
AB
+2
AC
|×|2
AB
+
AC
|
,
令|
AB
|=|
AC
|=a,
AB
AC

AB
AC
=0;
∴cosθ=
2a2+2a2
5
5
a
=
4
5
點(diǎn)評:本題考查了錐體的表面積與體積的計(jì)算問題以及平面向量的夾角問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若(2x+1)n=a0+a1x+…+aixi+…+anxn,其中n∈N*,則a1-22a2+…+(-1)n+1n2an=( 。
A、(-1)n+1•2•(5n-4)
B、(-1)n+1•6•(3n-2)
C、2n(2n+1)•3n-2
D、(-1)n+1•2n(2n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=2x+
1
x2
(x∈R)

(1)當(dāng)x∈(0,1]時(shí),求f(x)的解析式;
(2)判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1,2,3,…,9這9個(gè)自然數(shù)中,任取3個(gè)數(shù),
(1)記Y表示“任取的3個(gè)數(shù)中偶數(shù)的個(gè)數(shù)”,求隨機(jī)變量Y的分布列及其期望;
(2)記X為3個(gè)數(shù)中兩數(shù)相鄰的組數(shù),例如取出的數(shù)為1,2,3,則有這兩組相鄰的數(shù)1,2和2,3,此時(shí)X的值為2,求隨機(jī)變量X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)路上所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中x的值;
(2)如果上學(xué)路上所需時(shí)間不少于40分鐘的學(xué)生可申請?jiān)趯W(xué)校住宿,請估計(jì)學(xué)校1000名新生中有多少名學(xué)生可以申請住宿.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=2x-4與拋物線C:y2=4x相交于A,B兩點(diǎn),T(t,0)(t>0且t≠2)為x軸上任意一點(diǎn),連接AT,BT并延長與拋物線C分別相交于A1,B1
(1)設(shè)A1B1斜率為k,求證:k•t為定值;
(2)設(shè)直線AB,A1B1與x軸分別交于M,N,令S△ATM=S1S△BTM=S2,SB1TN=S3,SA1TN=S4,若S1,S2,S3,S4構(gòu)成等比數(shù)列,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,雙曲線
x2
a2
-
y2
b2
=1的離心率為e1,雙曲線
y2
b2
-
x2
a2
=1的離心率為e2,證明e12+e22=e12e22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線方程為2x2-y2=2,其弦PQ的長是實(shí)軸長的2倍,若弦PQ所在的直線l過點(diǎn)A(
3
,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在[-1,1]上的奇函數(shù),且當(dāng)x∈(0,1]時(shí),f(x)=
2x
4x+1

(1)試用函數(shù)單調(diào)性定義證明:f(x)在(0,1]上是減函數(shù);
(2)求函數(shù)f(x)在[-1,1]上的解析式;
(3)要使方程f(x)=x+b在區(qū)間[-1,1]上恒有實(shí)數(shù)解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案