6.在四棱錐P-ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中點(diǎn).
(1)求證:PB⊥AC.
(2)求二面角E-AC-D的正切值.

分析 (1)設(shè)AD中點(diǎn)為F,連接BF、PF,推導(dǎo)出△ABC∽△FAB,從而AC⊥BF,推導(dǎo)出PF⊥AC,由此能證明AC⊥PB.
(2)過(guò)E作EH∥PF,EH交AD于H,過(guò)H作HO⊥AC,交AC于O,連接EO,則∠EOH為二面角E-AC-D的平面角,由此能求出二面角E-AC-D的正切值.

解答 證明:(1)設(shè)AD中點(diǎn)為F連接BF、PF.
∵PA=PD=AB=a,∴$AD=BC=\sqrt{2}a,AF=\frac{{\sqrt{2}}}{2}a$,
∴$\frac{AB}{AF}=\frac{BC}{AB}=\sqrt{2}$.
∴△ABC∽△FAB,∴AC⊥BF,…(4分)
又∵PF⊥AD,又∵平面PAD⊥平面ABCD.
平面PAD∩平面ABCD=AD,
∴PF⊥面ABC,∴PF⊥AC,
∴AC⊥平面PBF,AC⊥PB.…(6分)
解:(2)過(guò)E作EH∥PF,EH交AD于H,
過(guò)H作HO⊥AC,交AC于O,連接EO.
由(1)知EH⊥面ACD,HO⊥AC,
∴∠EOH為二面角E-AC-D的平面角…(8分)
$EH=\frac{1}{2}PF=\frac{{\sqrt{2}}}{4}a$.
$OH=AHsin∠HAO=\frac{{3\sqrt{2}}}{4}a•\frac{{\sqrt{3}}}{3}=\frac{{\sqrt{6}}}{4}a$.
∴$tan∠EOH=\frac{EH}{OH}=\frac{{\sqrt{3}}}{3}$.
∴二面角E-AC-D的正切值為$\frac{\sqrt{3}}{3}$.…(12分)

點(diǎn)評(píng) 本題考查線線垂直的證明,考查二面角的正切值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(-x)+f(x+3)=0;當(dāng)x∈(0,3)時(shí),f(x)=$\frac{elnx}{x}$,其中e是自然對(duì)數(shù)的底數(shù),且e≈2.72,則方程6f(x)-x=0在[-9,9]上的解的個(gè)數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.不等式x2+x-2>0的解集為{x|x<-2或x>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知集合P={x|2x2-5x+2≤0},函數(shù)y=log2(ax2+2)的定義域?yàn)镾
(1)若P∩S≠∅,求實(shí)數(shù)a的取值范圍
(2)若方程log2(ax2+2)=2在$[{\frac{1}{2},2}]$上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若函數(shù)f(x)=x2+4x+5-c的最小值為2,則函數(shù)f(x-2015)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某小學(xué)對(duì)五年級(jí)的學(xué)生進(jìn)行體質(zhì)測(cè)試,已測(cè)得五年級(jí)一班30名學(xué)生的跳遠(yuǎn)成績(jī)(單位:cm),用莖葉圖統(tǒng)計(jì)如圖,男生成績(jī)?cè)?75cm以上(包括175cm)定義為合格,成績(jī)?cè)?75cm以下(不含175cm)定義為“不合格”;女生成績(jī)?cè)?65以上(包括165cm)定義為“合格”,成績(jī)?cè)?65cm以下(不含165cm)定義為“不合格”.
(1)求男生跳遠(yuǎn)成績(jī)的中位數(shù).
(2)以此作為樣本,估計(jì)該校五年級(jí)學(xué)生體質(zhì)的合格率.
(3)根據(jù)男女生的不同,用分層抽樣的方法從該班學(xué)生中抽取1個(gè)容量為5的樣本,再?gòu)倪@個(gè)樣本中抽取2人,求取出的2人都是女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合P={x?x-1≤0},Q={x?0<x≤2},則(CRP)∩Q=( 。
A.(0,1)B.(0.2]C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[-3,-2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則(  )
A.f(sinα)>f(sinβ)B.f(sinα)<f(cosβ)C.f(cosα)<f(cosβ)D.f(sinα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單遞減的函數(shù)是( 。
A.y=x-2B.y=x3C.y=ln(x+$\sqrt{{x^2}+1}$)D.y=sin2x

查看答案和解析>>

同步練習(xí)冊(cè)答案