【題目】已知函數(shù),的導(dǎo)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上存在最大值0,求函數(shù)上的最大值;

(3)求證:當(dāng)時,.

【答案】(1)見解析(2) (3)見解析

【解析】分析:(1)對a分類討論,求函數(shù)的單調(diào)區(qū)間.(2)根據(jù)函數(shù)上存在最大值0轉(zhuǎn)化得到a=1,再求函數(shù)上的最大值.(3)先利用第2問轉(zhuǎn)化得到,再證明≤0.

詳解:(1)由題意可知, ,則,

當(dāng)時,,∴上單調(diào)遞增;

當(dāng)時,解得時,,時,

上單調(diào)遞增,在上單調(diào)遞減

綜上,當(dāng)時,的單調(diào)遞增區(qū)間為,無遞減區(qū)間;當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)由(1)可知,處取得最大值,

,即,

觀察可得當(dāng)時,方程成立

,

當(dāng)時,,當(dāng)時,

上單調(diào)遞減,在單調(diào)遞增,

,

∴當(dāng)且僅當(dāng)時,

所以,由題意可知,上單調(diào)遞減,

所以處取得最大值

(3)由(2)可知,若,當(dāng)時,,即,

可得

,即證

,又,∴

,上單調(diào)遞減,,

,當(dāng)且僅當(dāng)時等號成立

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為增進(jìn)市民的環(huán)保意識,某市有關(guān)部門面向全體市民進(jìn)行了一次環(huán)保知識的微信問卷測試活動,每位市民僅有一次參與問卷測試機(jī)會.通過抽樣,得到參與問卷測試的1000人的得分?jǐn)?shù)據(jù),制成頻率分布直方圖如圖所示.

(1)估計成績得分落在[86,100]中的概率.

(2)設(shè)這1000人得分的樣本平均值為

(i)求(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)

(ii)有關(guān)部門為參與此次活動的市民贈送20元或10元的隨機(jī)話費(fèi),每次獲贈20元或10元的隨機(jī)話費(fèi)的概率分別為得分不低于的可獲贈2次隨機(jī)話費(fèi),得分低于的可獲贈1次隨機(jī)話費(fèi).求一位市民參與這次活動獲贈話費(fèi)的平均估計值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在R上的奇函數(shù),當(dāng)x0時,fx)=x2x;

1)求函數(shù)fx)的解析式;

2)求不等式fx)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面 ABCD為矩形,側(cè)面為正三角形,且平面平面 EPD 中點(diǎn),AD=2.

(1)證明平面AEC丄平面PCD;

(2)若二面角的平面角滿足,求四棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解甲、乙兩校學(xué)生自主招生通過情況,從甲校抽取60人,從乙校抽取50人進(jìn)行分析。

(1)根據(jù)題目條件完成上面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為自主招生通過情況與學(xué)生所在學(xué)校有關(guān);

(2)現(xiàn)已知甲校三人在某大學(xué)自主招生中通過的概率分別為,,,用隨機(jī)變量X表示三人在該大學(xué)自主招生中通過的人數(shù),求X的分布列及期望.

參考公式:.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥平面ABCD,點(diǎn)EF分別是ABPC的中點(diǎn).

(1)求證:AB⊥平面PAD;

(2)求證:EF//平面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以教材第82頁第8題的函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:

①同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域為;

②同學(xué)乙發(fā)現(xiàn):函數(shù)是偶函數(shù);

③同學(xué)丙發(fā)現(xiàn):對于任意的都有;

④同學(xué)丁發(fā)現(xiàn):對于任意的都有;

⑤同學(xué)戊發(fā)現(xiàn):對于函數(shù)定義域中任意的兩個不同實數(shù)總滿足.

其中所有正確研究成果的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年8月18日,舉世矚目的第18屆亞運(yùn)會在印尼首都雅加達(dá)舉行,為了豐富亞運(yùn)會志愿者的業(yè)余生活,同時鼓勵更多的有志青年加入志愿者行列,大會主辦方?jīng)Q定對150名志愿者組織一次有關(guān)體育運(yùn)動的知識競賽(滿分120分)并計劃對成績前15名的志愿者進(jìn)行獎勵,現(xiàn)將所有志愿者的競賽成績制成頻率分布直方圖,如圖所示,若第三組與第五組的頻數(shù)之和是第二組的頻數(shù)的3倍,試回答以下問題:

(1)求圖中的值;

(2)求志愿者知識競賽的平均成績;

(3)從受獎勵的15人中按成績利用分層抽樣抽取5人,再從抽取的5人中,隨機(jī)抽取2人在主會場服務(wù),求抽取的這2人中其中一人成績在分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn).點(diǎn)M(3,m)在雙曲線上.

(1)求雙曲線的方程;

(2)求證:;

(3)F1MF2的面積.

查看答案和解析>>

同步練習(xí)冊答案