18.已知點(diǎn)Q在圓x2+y2=1上,過點(diǎn)Q作x軸的垂線段MQ,垂足為M,動點(diǎn)P滿足:$\overrightarrow{MP}=\sqrt{2}\overrightarrow{MQ}$.當(dāng)點(diǎn)Q在圓上運(yùn)動時(shí),記動點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)過原點(diǎn)的直線與曲線Γ相交于A、B兩點(diǎn),過點(diǎn)A作y軸的垂線,垂足為C,求△ABC面積的最大值.

分析 (Ⅰ)相關(guān)點(diǎn)代入法求軌跡方程.(Ⅱ)直線與方程聯(lián)立,求出交點(diǎn)的橫坐標(biāo),表示出三角形的面積并通過函數(shù)求出最值.

解答 解:(Ⅰ)設(shè)Q(x0,y0),P(x,y)則M(x0,0),$\overrightarrow{MP}=(x-{x}_{0,}y)$,$\overrightarrow{MQ}=(0,{y}_{0})$
由$\overrightarrow{MP}=\sqrt{2}\overrightarrow{MQ}$,得$\left\{\begin{array}{l}{x-{x}_{0}=0}\\{y=\sqrt{2}{y}_{0}}\end{array}\right.$⇒$\left\{\begin{array}{l}{{x}_{0}=x}\\{{y}_{0}=\frac{\sqrt{2}}{2}y}\end{array}\right.$
代入圓的方程中,得P點(diǎn)的軌跡方程:${x^2}+\frac{y^2}{2}=1$
所以曲線Γ是焦點(diǎn)在y軸上的橢圓,焦點(diǎn)坐標(biāo)分別為(0,1)與(0,-1)…(4分)
當(dāng)AB的斜率存在時(shí),設(shè)AB的方程為:y=kx與Γ的方程聯(lián)立,
消去y,整理得$x=±\frac{{\sqrt{2}}}{{\sqrt{{k^2}+2}}}$,設(shè)A(x1,y1),B(x2,y2
則$|{{x_1}-{x_2}}|=\frac{{2\sqrt{2}}}{{\sqrt{{k^2}+2}}},|{{y_1}-{y_2}}|=\frac{{2\sqrt{2}|k|}}{{\sqrt{{k^2}+2}}}$|AB|=$\sqrt{({x}_{1}{-{x}_{2})}^{2}+({y}_{1}{-{y}_{2})}^{2}}$=$\frac{\sqrt{8({k}^{2}+1)}}{\sqrt{{k}^{2}+2}}$,…(8分)
設(shè)$C(0,\frac{{\sqrt{2}k}}{{\sqrt{{k^2}+2}}})$,則點(diǎn)C到直線AB的距離$d=\frac{{\sqrt{2}|k|}}{{\sqrt{({k^2}+1)({k^2}+2)}}}$,${S}_{△ABC}=\frac{1}{2}|AB|d=\frac{2|k|}{{k}^{2}+2}$…(10分)
當(dāng)k=0時(shí),S=0,當(dāng)k≠0時(shí)$S=\frac{2}{{|k|+\frac{2}{|k|}}}≤\frac{{\sqrt{2}}}{2}$,當(dāng)$k=±\sqrt{2}$時(shí)取等號
故三角形ABC面積的最大值為$\frac{{\sqrt{2}}}{2}$…(12分)

點(diǎn)評 本題主要考查(Ⅰ)相關(guān)點(diǎn)代入法求軌跡方程.(Ⅱ)直線與方程聯(lián)立,求出交點(diǎn)的橫坐標(biāo),表示出三角形的面積并通過函數(shù)求出最值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+1|-|x-3|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)若存在x∈R,使f(x)>|2a-4|,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.長方體ABCD-A1B1C1D1中,AB=2AD=2AA1=2,P為A1B1中點(diǎn).
(Ⅰ)求證:CP⊥平面AD1P;
(Ⅱ)求點(diǎn)P到平面ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l:y=kx+1與圓C:(x-2)2+(y-3)2=1相交于A,B兩點(diǎn)
(1)求弦AB的中點(diǎn)M的軌跡方程;
(2)若O為坐標(biāo)原點(diǎn),S(k)表示△OAB的面積,若f(k)=[S(k)•(k2+1)]2,求f(k)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在正三棱柱ABC-A1B1C1中,AB=BB1=4.
(1)求直線AB1與A1C1所成角;
(2)求點(diǎn)B到平面AB1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C經(jīng)過點(diǎn)A(1,1)、B(-2,-2),并且直線m:2x-y=4平分圓C.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A、B兩點(diǎn),且OA⊥OB,O是坐標(biāo)原點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|2x+1|+|2x-a|.
(1)若f(x)的最小值為2,求a的值;
(2)若f(x)≤|2x-4|的解集包含[-2,-1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知C為AB為直徑的圓O上任意一點(diǎn),且△SAC為等邊三角形,平面SAC⊥平面ABC.
(1)求證:BC⊥SA;
(2)求二面角A-BC-S所成角的大;
(3)若AC=2,SB=2$\sqrt{3}$,求直線SB與平面ABC所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+(m-1)x+m2-2,若f(x)=0的兩根一個(gè)大于-1,一個(gè)小于-1,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案