精英家教網 > 高中數學 > 題目詳情
16.函數f(x)=x(x-2)(x-4)(x-6),則f′(2)=16.

分析 根據求導公式和法則求出f′(x),將x=2代入求出f′(2)的值.

解答 解:由題意得,f′(x)=[x(x-2)(x-4)(x-6)]′
=(x-2)(x-4)(x-6)+x(x-4)(x-6)+x(x-2)(x-6)+x(x-2)(x-4),
所以f′(2)=2×(-2)×(-4)=16,
故答案為:16.

點評 本題考查了基本初等函數的求導公式和法則,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

6.已知函數$f(x)=\left\{\begin{array}{l}{2^x}-2,x≥0\\{log_{\frac{1}{2}}}({-x}),x<0\end{array}\right.$,若f[f(m)]<0,則實數m的取值范圍為( 。
A.$({-3,-1}]∪({-\frac{1}{2},1}]∪({2,+∞})$B.$({-∞,-2}]∪({-1,-\frac{1}{2}}]∪({1,{{log}_2}3})$
C.$({-∞,-1}]∪({0,\frac{1}{2}}]∪({1,+∞})$D.(-∞,-3]∪(-1,0]∪(1,log23)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.若正數a,b滿足3+log2a=2+log3b=log6(a+b),則$\frac{1}{a}+\frac{1}$等于( 。
A.18B.36C.72D.144

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.直線l:y=kx+1,拋物線C:y2=4x,直線l與拋物線C只有一個公共點,則k=0或1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.橢圓$\frac{x^2}{16}+\frac{y^2}{3}=1$的左右焦點分別為F1,F2,一條直線經過F1與橢圓交于A,B兩點,則△ABF2 的周長為( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知偶函數f(x)在[-1,0]上為單調增函數,則( 。
A.f(sin$\frac{π}{8}$)<f(cos$\frac{π}{8}$)B.f(sin1)>f(cos1)
C.f(sin$\frac{π}{12}$)<f(sin$\frac{5π}{12}$)D.f(sin$\frac{π}{12}$)>f(tan$\frac{π}{12}$)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知A,B,C是△ABC的三個內角.
(1)3cos(B-C)-1=6cosBcosC,求cosA的值;
(2)若sin(A+$\frac{π}{6}$)=2cosA,求A.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.“x<2”是“x2<4”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.若sin(2x+$\frac{π}{3}$)=a(|a|≤1),則cos($\frac{π}{6}$-2x)的值是( 。
A.-aB.aC.|a|D.±a

查看答案和解析>>

同步練習冊答案