15.若sin(2x+$\frac{π}{3}$)=a(|a|≤1),則cos($\frac{π}{6}$-2x)的值是(  )
A.-aB.aC.|a|D.±a

分析 根據(jù)(2x+$\frac{π}{3}$)+($\frac{π}{6}$-2x)=$\frac{π}{2}$,利用誘導(dǎo)公式進行化簡即可.

解答 解:∵sin(2x+$\frac{π}{3}$)=a(|a|≤1),
∴cos($\frac{π}{6}$-2x)=sin[$\frac{π}{2}$-($\frac{π}{6}$-2x)]
=sin($\frac{π}{3}$+2x)
=a.
故選:B.

點評 本題考查了三角函數(shù)誘導(dǎo)公式的應(yīng)用問題,解題的關(guān)鍵是得出兩角之間的關(guān)系,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=x(x-2)(x-4)(x-6),則f′(2)=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.學校生態(tài)園計劃移栽甲乙兩種植物各2株,設(shè)甲、乙兩種植物的成活率分別是$\frac{2}{3}$和$\frac{1}{2}$,且各株植物是否成活互不影響,求移栽的4株植物中:
(1)恰成活一株的概率;
(2)成活的株數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.函數(shù)f(x)=$\frac{1}{2}$x2-(a+1)x+alnx.
(1)討論f(x)單調(diào)性;
(2)若f(x)恰有兩個零點,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R)是奇函數(shù),那么實數(shù)a的值等于( 。
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=-x2+2x在[0,8]的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知正四棱柱ABCD-A1B1C1D1中,AA1=4,AB=2,E是AA1的中點,則異面直線D1C與BE所成角的余弦值為(  )
A.$\frac{1}{5}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{{\sqrt{1-{x^2}}}}{x}$的定義域為( 。
A.[-1,0)∪(0,1]B.[-1,1]C.[-1,0)∪(0,1)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.為了得到函數(shù)y=$\sqrt{2}$cos3x的圖象,可以將函數(shù)y=sin3x+cos3x的圖象( 。
A.向右平移$\frac{π}{4}$個單位B.向左平移$\frac{π}{4}$個單位
C.向右平移$\frac{π}{12}$個單位D.向左平移$\frac{π}{12}$個單位

查看答案和解析>>

同步練習冊答案