7.$\underset{\stackrel{3}{∫}}{2}$(2x+1)dx(  )
A.2B.6C.10D.8

分析 利用微積分基本定理,找出被積函數(shù)的原函數(shù),然后計算.

解答 解:${∫}_{2}^{3}$(2x+1)dx=(x2+x)|${\;}_{2}^{3}$=(9+3)-(4+2)=6;
故選B.

點評 本題考查了定積分的計算;找出被積函數(shù)的原函數(shù)是關(guān)鍵;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.用反證法證明“三角形中至少有一個內(nèi)角不小于60°”,應(yīng)先假設(shè)這個三角形中(  )
A.有一個內(nèi)角小于60°B.每一個內(nèi)角都小于60°
C.有一個內(nèi)角大于60°D.每一個內(nèi)角都大于60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\frac{{{e^x}+{e^{-x}}+sinx}}{{{e^x}+{e^{-x}}}}$,其導(dǎo)函數(shù)記為f'(x),則f(2017511)+f'(2017511)+f(-2017511)-f'(-2017511)=( 。
A.0B.1C.2D.2017511

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題p:若實數(shù)x,y滿足x2+y2=0,則x,y全為0;命題q:若a>b,則$\frac{1}{a}$<$\frac{1}$,給出下列四個命題:①p∧q;②p∨q;③¬p;④¬q.
其中真命題是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的上下焦點分別為F1,F(xiàn)2離心率為$\frac{1}{2}$,P為C上動點,且滿足$\overrightarrow{{F}_{2}P}$=λ$\overrightarrow{PQ}$(λ>0),|$\overrightarrow{PQ}$|=|$\overrightarrow{P{F}_{1}}$|,△QF1F2面積的最大值為4.
(Ⅰ)求Q點軌跡E的方程和橢圓C的方程;
(Ⅱ)直線y=kx+m(m>0)與橢圓C相切且與曲線E交于M,N兩點,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.要得到函數(shù)y=$\sqrt{2}$sinx的圖象,只需將函數(shù)y=$\sqrt{2}$cos(2x-$\frac{π}{4}$)的圖象上所有的點( 。
A.橫伸長到原來的2倍,再向左平移$\frac{π}{8}$
B.橫伸長到原來的2倍,再向右平移$\frac{π}{4}$個
C.橫縮短到原來的$\frac{1}{2}$倍,再向右平移$\frac{π}{4}$
D.橫縮短到原來的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在數(shù)列{an}中,a1=1,an=$\frac{n-1}{n}$an-1(n≥2),則通項公式an等于( 。
A.$\frac{n-1}{n}$B.$\frac{1}{n}$C.$\frac{n}{n-1}$D.$\frac{n+1}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x2-6x+5≤0},B={x||2x-3|<1},則A∩B=(  )
A.(1,2)B.[1,2)C.(2,5]D.[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線C1:$\frac{x^2}{4}-\frac{y^2}{3}=1$與雙曲線C2:$\frac{x^2}{4}-\frac{y^2}{3}=-1$,給出下列說法,其中錯誤的是(  )
A.它們的焦距相等B.它們的焦點在同一個圓上
C.它們的漸近線方程相同D.它們的離心率相等

查看答案和解析>>

同步練習(xí)冊答案