分析 (1)取BC1的中點(diǎn)F,連接DF,EF,則EF平行且等于AD,可得AE∥DF,利用線面平行的判定定理證明:直線AE∥平面BDC1;
(2)利用等體積的方法,求點(diǎn)C到平面BDC1的距離.
解答 (1)證明:取BC1的中點(diǎn)F,連接DF,EF,則EF平行且等于AD,
∴EFDA是平行四邊形,
∴AE∥DF,
∵AE?平面BDC1,DF?平面BDC1,
∴直線AE∥平面BDC1;
(2)解:△BDC1中,BD=2$\sqrt{2}$,BC1=2$\sqrt{5}$,DC1=2$\sqrt{2}$,
∴${S}_{△BD{C}_{1}}$=$\frac{1}{2}×2\sqrt{5}×\sqrt{3}$=$\sqrt{15}$.
設(shè)點(diǎn)C到平面BDC1的距離為h.則
由等體積可得$\frac{1}{3}×\sqrt{15}h=\frac{1}{3}×\frac{1}{2}×2×4×\sqrt{3}$,
∴h=$\frac{4\sqrt{5}}{5}$,
∴點(diǎn)C到平面BDC1的距離為$\frac{4\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查線面平行的判定,考查點(diǎn)到平面距離的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [15,+∞) | B. | [6,+∞) | C. | (-∞,15] | D. | (-∞,6] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com