已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,l?α,l?β,則以下命題正確的個(gè)數(shù)是( 。
(1)α∥β且l∥α
(2)α⊥β且l⊥β
(3)α與β相交,且交線垂直于l
(4)α與β相交,且交線平行于l.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)
考點(diǎn):空間中直線與平面之間的位置關(guān)系,平面與平面之間的位置關(guān)系
專題:探究型,空間位置關(guān)系與距離
分析:由于m,n為異面直線,m⊥平面α,n⊥平面β,則平面α與平面β必相交,但未必垂直,且交線垂直于直線m,n;又直線l滿足l⊥m,l⊥n,則交線平行于l,即可得出結(jié)論.
解答: 解:由于m,n為異面直線,m⊥平面α,n⊥平面β,則平面α與平面β必相交,但未必垂直,且交線垂直于直線m,n,排除(1)(2);
又直線l滿足l⊥m,l⊥n,則交線平行于l,排除(3),確定(4)
故選B.
點(diǎn)評(píng):此題主要考查平面與平面的位置關(guān)系,屬于概念性質(zhì)理解的問題,題目較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=1+i,則
1
z
+z=(  )
A、
1
2
+
3
2
i
B、
1
2
-
3
2
i
C、
3
2
-
3
2
i
D、
3
2
+
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求由y=sinx與直線y=
2
2
x
所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)fM(x)的定義域?yàn)镽,滿足fM(x)=
1,x∈M
0,x∉M
(M是R的非空真子集),若A,B是R上的兩個(gè)非空真子集,且A∩B=∅,則
fA∪B(x)+1
fA(x)+fB(x)+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x,y)在映射f下的象是(x+y,x-y),則(4,6)的原象是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+1,x≤1
2x-1,x>1
,則f(f(1))的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,已知a1,a2=2,an+2=an+1-an(n∈N*),則a2011=( 。
A、1B、-1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為偶函數(shù),當(dāng)x∈[0,1]時(shí)f(x)=x,函數(shù)g(x)=f(x)-mx-m在(-1,1]內(nèi)有2個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A、(0,
1
2
]
B、(-1,
1
2
]
C、[
1
2
,+∞)
D、(-∞,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-3<x<
3
2
},集合B={x|x≥3或x≤-3},求A∪B,A∩B,(∁RA)∩B.

查看答案和解析>>

同步練習(xí)冊(cè)答案