8.已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),設h(x)=f(x)-g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.

分析 (1)利用對數(shù)函數(shù)的性質(zhì)列出不等式求解函數(shù)的定義域.
(2)利用函數(shù)的奇偶性的定義判斷即可.
(3)求出a,然后利用對數(shù)函數(shù)的單調(diào)性求解不等式即可.

解答 解:(1)由題意得$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$,即-1<x<1.
∴h(x)=f(x)-g(x)的定義域為(-1,1);
(2)∵對任意的x∈(-1,1),-x∈(-1,1)
h(-x)=loga(1-x)-loga(1+x)=-h(x),
∴h(x)=loga(1+x)-loga(1-x)是奇函數(shù);
(3)由a=log327+log2,得a=2.
f(x)=loga(1+x)>1,即log2(1+x)>log22,
∴1+x>2,即x>1.
故使f(x)>1成立的x的集合為{x|x>1}

點評 本題考查對數(shù)函數(shù)的定義域,奇偶性以及函數(shù)的單調(diào)性的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)是R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點,那么-1<f(x)<1 的解集是( 。
A.(-3,0)B.(0,3)C.(-∞,-1]∪[3,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設a=${0.6^{\frac{1}{2}}}$,b=${0.6^{\frac{1}{3}}}$,c=log0.63,則( 。
A.c<b<aB.c<a<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,a,b,c分別是角A,B,C的對邊,A,B是銳角,c=10,且$\frac{cosA}{cosB}=\frac{a}=\frac{4}{3}$.
(1)證明角C=90°;    
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.集合A=$\{x|\left\{\begin{array}{l}3x+6>0\\ 2x-10<0\end{array}\right._{\;}^{\;}\},B=\{x|m+1≤x≤2m-1\}$,若B⊆A求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知A(-1,1),B(2,2),若直線l過點P(0,-1),且對線段AB相交,則直線l的斜率取值范圍是k≤-2或k≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設不等式ax2+bx+c<0的解集是(-∞,1)∪(3,+∞),則不等式cx2+bx+a>0的解集是($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=sin x•cos x的導數(shù)是( 。
A.cos2x+sin2xB.cos2x-sin2xC.2cos x•sin xD.cos x•sin x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.解關于x的不等式3ax2-(a+3)x+1<0.

查看答案和解析>>

同步練習冊答案