3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{e^x}+{x^2},x≥0\\{e^{-x}}+{x^2},x<0\end{array}$,若f(-a)+f(a)≤2f(1),則a的取值范圍是(  )
A.(-∞,1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

分析 先判斷函數(shù)為偶函數(shù),再判斷在(0,+∞)上為增函數(shù),即可求出a的范圍.

解答 解:∵f(x)=$\left\{\begin{array}{l}{e^x}+{x^2},x≥0\\{e^{-x}}+{x^2},x<0\end{array}$,
∴f(x)為偶函數(shù),
∵f(-a)+f(a)≤2f(1),
∴2f(a)≤2f(1),
∴f(a)≤f(1),
∵當(dāng)x≥0時,函數(shù)f(x)為增函數(shù),
∴|a|≤1,
∴-1≤a≤1,
故選:D

點評 本題考查了分段函數(shù)的問題以及函數(shù)的奇偶性和單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的值域:
(1)f(x)=x2+2x;         
(2)g(x)=$\frac{1}{x}$,x∈[1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項和為Sn,且Sn=2n-1,數(shù)列{bn}滿足b1=2,bn+1-2bn=8an
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項和為Tn,是否存在常數(shù)λ,使得不等式(-1)nλ<1+$\frac{{T}_{n}-6}{{T}_{n+1}-6}$恒成立?若存在,求出λ的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2-bx(a,b∈R),若y=f(x)圖象上的點(1,-$\frac{11}{3}$)處的切線斜率為-4,
(1)求f(x)的解析式.
(2)求y=f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.平面直角坐標(biāo)系的原點為O,橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F,直線PQ過F交橢圓于P,Q兩點,且|PF|max•|QF|min=$\frac{a^2}{4}$.
(1)求橢圓的長軸與短軸之比;
(2)如圖,線段PQ的垂直平分線與PQ交于點M,與x軸,y軸分別交于D,E兩點,求$\frac{{{S_{△DFM}}}}{{{S_{△DOE}}}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)i為虛數(shù)單位,則(x-i)6的展開式中含x4的項為(  )
A.-15x4B.15x4C.-20ix4D.20ix4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知某棱錐的三視圖如圖所示,則該棱錐的表面積為( 。
A.2+$\sqrt{5}$B.3+$\frac{\sqrt{5}}{2}$C.2+$\frac{\sqrt{5}}{2}$D.3+$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合U={x|y=$\sqrt{x}$},A={x|3≤2x-1<5},則∁UA=( 。
A.(0,2)B.[0,2)∪[3,+∞)C.[1,+∞)D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.有三個數(shù)成等比數(shù)列,它們的積為27,它們的和為13.求這三個數(shù).

查看答案和解析>>

同步練習(xí)冊答案