A. | (-∞,1]∪[1,+∞) | B. | [-1,0] | C. | [0,1] | D. | [-1,1] |
分析 先判斷函數(shù)為偶函數(shù),再判斷在(0,+∞)上為增函數(shù),即可求出a的范圍.
解答 解:∵f(x)=$\left\{\begin{array}{l}{e^x}+{x^2},x≥0\\{e^{-x}}+{x^2},x<0\end{array}$,
∴f(x)為偶函數(shù),
∵f(-a)+f(a)≤2f(1),
∴2f(a)≤2f(1),
∴f(a)≤f(1),
∵當(dāng)x≥0時,函數(shù)f(x)為增函數(shù),
∴|a|≤1,
∴-1≤a≤1,
故選:D
點評 本題考查了分段函數(shù)的問題以及函數(shù)的奇偶性和單調(diào)性,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -15x4 | B. | 15x4 | C. | -20ix4 | D. | 20ix4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+$\sqrt{5}$ | B. | 3+$\frac{\sqrt{5}}{2}$ | C. | 2+$\frac{\sqrt{5}}{2}$ | D. | 3+$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | [0,2)∪[3,+∞) | C. | [1,+∞) | D. | [2,3] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com