已知離心率為的橢圓上的點到左焦點的最長距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點任作一條與兩坐標(biāo)軸都不垂直的弦,若點在軸上,且使得為的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標(biāo).
(1)橢圓的方程為,其準(zhǔn)線方程為;(2).
解析試題分析:(1)由題意知:,解得,,
故橢圓的方程為,其準(zhǔn)線方程為 4分
(2)設(shè)為橢圓的左特征點,橢圓的左焦點為,可設(shè)直線的方程為:,
聯(lián)立方程組,消去得,即,
設(shè),則
∵被軸平分,∴,即,
,
即,
∴于是,
∵,∴,即,∴.
考點:本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,三角形面積計算。
點評:中檔題,不必太其橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),a,b,c,e的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)涉及新定義問題,注意理解其實質(zhì)內(nèi)容。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的右焦點為,直線與軸交于點,若(其中為坐標(biāo)原點).
(I)求橢圓的方程;
(II)設(shè)是橢圓上的任意一點,為圓的任意一條直徑(、為直徑的兩個端點),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,過拋物線(>0)的頂點作兩條互相垂直的弦OA、OB。
⑴設(shè)OA的斜率為k,試用k表示點A、B的坐標(biāo);
⑵求弦AB中點M的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓與軸負(fù)半軸交于點,為橢圓第一象限上的點,直線交橢圓于另一點,橢圓左焦點為,連接交于點D。
(1)如果,求橢圓的離心率;
(2)在(1)的條件下,若直線的傾斜角為且△ABC的面積為,求橢圓的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點為F2,點F1與F2關(guān)于坐標(biāo)原點對稱,直線m垂直于軸(垂足為T),與拋物線交于不同的兩點P、Q,且.
(Ⅰ)求點T的橫坐標(biāo);
(Ⅱ)若橢圓C以F1,F2為焦點,且F1,F2及橢圓短軸的一個端點圍成的三角形面積為1.
① 求橢圓C的標(biāo)準(zhǔn)方程;
② 過點F2作直線l與橢圓C交于A,B兩點,設(shè),若的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若直線過雙曲線的一個焦點,且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過點與軸不平行的直線與雙曲線相交于不同的兩點的垂直平分線為,求直線在軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線與拋物線相切于點,且與軸交于點,為坐標(biāo)原點,定點的坐標(biāo)為.
(1)若動點滿足,求點的軌跡;
(2)若過點的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點(在之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個焦點,,過且與坐標(biāo)軸不平行的直線與橢圓交于兩點,如果的周長等于8。
(1)求橢圓的方程;
(2)若過點的直線與橢圓交于不同兩點,試問在軸上是否存在定點,使恒為定值?若存在,求出點的坐標(biāo)及定值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com