分析 (Ⅰ)推導(dǎo)出函數(shù)$f(x)=cos(x+\frac{π}{6})sin(x+\frac{π}{3})-sinxcosx-\frac{1}{4}$=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{3}{4}π$),由此能求出函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)先求出A=$\frac{π}{4}$,C=$π-\frac{π}{4}-\frac{π}{6}$=$\frac{7π}{12}$,由正弦定理得:$\frac{sinB}=\frac{c}{sinC}$,由此能求出c的值.
解答 解:(Ⅰ)∵函數(shù)$f(x)=cos(x+\frac{π}{6})sin(x+\frac{π}{3})-sinxcosx-\frac{1}{4}$
=(cosxcos$\frac{π}{6}$-sinxsin$\frac{π}{6}$)(sinxcos$\frac{π}{3}$+cosxsin$\frac{π}{3}$)-sinxcosx-$\frac{1}{4}$
=($\frac{\sqrt{3}}{2}cosx$-$\frac{1}{2}sinx$)($\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx$)-sinxcosx-$\frac{1}{4}$
=$\frac{3}{4}co{s}^{2}x-\frac{1}{4}si{n}^{2}x$-sinxcosx-$\frac{1}{4}$
=$\frac{3}{8}cos2x+\frac{3}{8}$-$\frac{1}{8}$+$\frac{1}{8}cos2x$-$\frac{1}{2}sin2x$-$\frac{1}{4}$
=-$\frac{1}{2}sin2x$+$\frac{1}{2}sin2x$
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{3}{4}π$),
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}$=π.
由$\frac{π}{2}+2kπ≤2x+\frac{3}{4}π≤\frac{3π}{2}+2kπ$,k∈Z,
得-$\frac{π}{8}+kπ$≤x≤$\frac{3π}{8}$+kπ,k∈Z,
∴單調(diào)遞減區(qū)間為[-$\frac{π}{8}$+kπ,$\frac{3π}{8}+kπ$].k∈Z.
(Ⅱ)由(Ⅰ)得f($\frac{A}{2}$)=$\frac{\sqrt{2}}{2}$sin(A+$\frac{3π}{4}$)=0,
∵0<A<π,∴A=$\frac{π}{4}$,C=$π-\frac{π}{4}-\frac{π}{6}$=$\frac{7π}{12}$,
∴由正弦定理得:$\frac{sinB}=\frac{c}{sinC}$,
∴c=$\frac{bsinC}{sinB}$=$\frac{2sin\frac{7π}{12}}{sin\frac{π}{6}}$=4sin($\frac{π}{4}+\frac{π}{3}$)
=4(sin$\frac{π}{4}$cos$\frac{π}{3}$+cos$\frac{π}{4}$sin$\frac{π}{3}$)
=4($\frac{\sqrt{2}}{2}×\frac{1}{2}$+$\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}$)=$\sqrt{2}+\sqrt{6}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的最小正周期和單調(diào)減區(qū)間的求法,考查三角形邊長(zhǎng)的求法,解題時(shí)要認(rèn)真審題,注意三角函數(shù)性質(zhì)、正弦定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
觀察下列散點(diǎn)圖,其中兩個(gè)變量的相關(guān)關(guān)系判斷正確的是( )
A.為正相關(guān),為負(fù)相關(guān),為不相關(guān)
B.為負(fù)相關(guān),為不相關(guān),為正相關(guān)
C.為負(fù)相關(guān),為正相關(guān),為不相關(guān)
D.為正相關(guān),為不相關(guān),為負(fù)相關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $2\sqrt{2}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com