7.設(shè)P為曲線C1上動(dòng)點(diǎn),Q為曲線C2上動(dòng)點(diǎn),則稱|PQ|的最小值為曲線C1,C2之間的距離,記作d(C1,C2).若C1:x2+y2=2,C2:(x-3)2+(y-3)2=2,則d(C1,C2)=$\sqrt{2}$;若C3:ex-2y=0,C4:lnx+ln2=y,則d(C3,C4)=$\sqrt{2}$(1-ln2).

分析 考慮到C1:x2+y2=2,C2:(x-3)2+(y-3)2=2,利用圓心距減去半徑,可得結(jié)論;
考慮到兩曲線C3:ex-2y=0,C4:lnx+ln2=y關(guān)于直線y=x對(duì)稱,求丨PQ丨的最小值可轉(zhuǎn)化為求P到直線y=x的最小距離,再利用導(dǎo)數(shù)的幾何意義,求曲線上斜率為1的切線方程,由點(diǎn)到直線的距離公式即可得到最小值.

解答 解:C1(0,0),r1=$\sqrt{2}$,C2(3,3),r2=$\sqrt{2}$,d(C1,C2)=3$\sqrt{2}$$-\sqrt{2}-\sqrt{2}$=$\sqrt{2}$;
∵C3:ex-2y=0,C4:lnx+ln2=y互為反函數(shù),
先求出曲線ex-2y=0上的點(diǎn)到直線y=x的最小距離.
設(shè)與直線y=x平行且與曲線ex-2y=0相切的切點(diǎn)P(x0,y0).
y′=$\frac{1}{2}$ex,
∴$\frac{1}{2}{e}^{{x}_{0}}$=1,解得x0=ln2
∴y0=1.
得到切點(diǎn)P(ln2,1),到直線y=x的距離d=$\frac{1-ln2}{\sqrt{2}}$,
丨PQ丨的最小值為2d=$\sqrt{2}$(1-ln2),
故答案為$\sqrt{2}$,$\sqrt{2}$(1-ln2).

點(diǎn)評(píng) 本題主要考查圓與圓的位置關(guān)系,考查了互為反函數(shù)的函數(shù)圖象的對(duì)稱性,導(dǎo)數(shù)的幾何意義,曲線的切線方程的求法,轉(zhuǎn)化化歸的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$,則$\frac{y}{x}$的最大值為(  )
A.$\frac{1}{3}$B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知F1,F(xiàn)2分別為橢圓C:$\frac{x^2}{8}+\frac{y^2}{2}=1$的左、右焦點(diǎn),點(diǎn)P(x0,y0)在橢圓C上.
(Ⅰ)求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值;
(Ⅱ)設(shè)直線l的斜率為$\frac{1}{2}$,直線l與橢圓C交于A,B兩點(diǎn),若點(diǎn)P在第一象限,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-1$,求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若平面向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=(1,-1),且$\overrightarrow{a}$⊥$\overrightarrow$,則sin2θ的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ex+x2-x,g(x)=x2+ax+b,a,b∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(Ⅱ)若曲線y=f(x)在點(diǎn)(0,1)處的切線l與曲線y=g(x)切于點(diǎn)(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}x≥0\\ x+y≤2\\ x≤y\end{array}\right.$所表示的平面區(qū)域的面積為(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知奇函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,點(diǎn)M的坐標(biāo)為(1,0)且△MNE為等腰直角三角形,當(dāng)A取最大值時(shí),f($\frac{1}{3}$)等于( 。
A.-$\frac{\sqrt{3}}{4}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow a=(cosθ,sinθ)$,向量$\overrightarrow$=($\sqrt{3}$,1),且$\overrightarrow{a}$⊥$\overrightarrow$,則tanθ的值是( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若正數(shù)x,y滿足x+2y=4xy,則x+$\frac{y}{2}$的最小值為$\frac{9}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案