6.已知{an}為無(wú)窮等比數(shù)列,且公比q>1,記Sn為{an}的前n項(xiàng)和,則下面結(jié)論正確的是( 。
A.a3>a2B.a1+a2>0C.$\{{a_n}^2\}$是遞增數(shù)列D.Sn存在最小值

分析 在A中,當(dāng)a1<0時(shí),a3<a2;在B中,當(dāng)a1<0時(shí),a1+a2<0;在C中,$\{{a_n}^2\}$是遞增數(shù)列;在D中,當(dāng)a1<0時(shí),Sn不存在最小值.

解答 解:由{an}為無(wú)窮等比數(shù)列,且公比q>1,記Sn為{an}的前n項(xiàng)和,知:
在A中,當(dāng)a1<0時(shí),a3<a2,故A錯(cuò)誤;
在B中,當(dāng)a1<0時(shí),a1+a2<0,故B錯(cuò)誤;
在C中,${{a}_{n}}^{2}$=$({a}_{1})^{2}{q}^{2n-2}$,∴$\{{a_n}^2\}$是遞增數(shù)列,故C正確;
在D中,當(dāng)a1<0時(shí),Sn不存在最小值,故D錯(cuò)誤.
故選:C.

點(diǎn)評(píng) 本題考查命題真假的判斷,考查等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=sinωx+acosωx(ω>0)的圖象過(guò)點(diǎn)$A(0,\sqrt{3})$,且$f(x+\frac{π}{2})=-f(x)$,將其圖象向右平移m(m>0)個(gè)單位長(zhǎng)度,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則m的最小值為( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-1≥0\\ x≤3\end{array}\right.$,則z=2x-3y的最大值是(  )
A.-3B.-6C.15D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={x|-1<x<2},B={x|0<x<2},則∁AB=( 。
A.(-1,0)B.(-1,0]C.(0,2)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,四邊形ABCD為直角梯形,∠ABC=90°,CB∥DA,AB=20$\sqrt{2}$,DA=10,CB=20,若AB邊上有一點(diǎn)P,使得∠CPD最大,則AP=10$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\frac{1}{x}-{2^x}$,則$f(\frac{1}{2})$>f(1)(填“>”或“<”);f(x)在區(qū)間$(\frac{n-1}{n},\frac{n}{n+1})$上存在零點(diǎn),則正整數(shù)n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若集合A={-2,0,1},B={x|x<-1或x>0},則A∩B=(  )
A.{-2}B.{1}C.{-2,1}D.{-2,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知等差數(shù)列{an}的公差為2,且a1,a2,a4成等比數(shù)列,則a1=2;數(shù)列{an}的前n項(xiàng)和Sn=n2+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)i為虛數(shù)單位,n為正整數(shù),θ∈[0,2π).
(1)用數(shù)學(xué)歸納法證明:(cosθ+isinθ)n=cosnθ+isinnθ;
(2)已知$z=\sqrt{3}-i$,試?yán)茫?)的結(jié)論計(jì)算z10

查看答案和解析>>

同步練習(xí)冊(cè)答案