16.已知函數(shù)f(x)=sinωx+acosωx(ω>0)的圖象過(guò)點(diǎn)$A(0,\sqrt{3})$,且$f(x+\frac{π}{2})=-f(x)$,將其圖象向右平移m(m>0)個(gè)單位長(zhǎng)度,所得函數(shù)圖象關(guān)于y軸對(duì)稱(chēng),則m的最小值為( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 先求出a的值,再化簡(jiǎn)函數(shù)f(x),根據(jù)周期的定義求出ω,根據(jù)函數(shù)圖象的平移,利用圖象關(guān)于y軸對(duì)稱(chēng),求出m的最小值.

解答 解:∵函數(shù)f(x)=sinωx+acosωx(ω>0)的圖象過(guò)點(diǎn)$A(0,\sqrt{3})$,
∴sin0+acos0=$\sqrt{3}$,
解得a=$\sqrt{3}$,
∴f(x)=sinωx+$\sqrt{3}$cosωx=2sin(ωx+$\frac{π}{3}$)
∵$f(x+\frac{π}{2})=-f(x)$,
∴f(x+π)=-f(x+$\frac{π}{2}$)=f(x),
∴函數(shù)f(x)的周期為π,
∴ω=$\frac{2π}{π}$=2,
∴f(x)=2sin(2x+$\frac{π}{3}$),
∵將其圖象向右平移m(m>0)個(gè)單位長(zhǎng)度,所得函數(shù)圖象關(guān)于y軸對(duì)稱(chēng),
∴$\frac{π}{3}$-2m=$\frac{π}{2}$+kπ,k∈Z,
∴m=-$\frac{π}{12}$-$\frac{kπ}{2}$,k∈Z,
當(dāng)k=-1時(shí),最小,最小為$\frac{5π}{12}$,
故選:D

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)與圖象平移的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2.
(1)求A1到平面AB1D距離;
(2)求D到平面A1BD1距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.據(jù)記載,在公元前3世紀(jì),阿基米德已經(jīng)得出了前n個(gè)自然數(shù)平方和的一般公式.如圖是一個(gè)求前n個(gè)自然數(shù)平方和的算法流程圖,若輸入x的值為1,則輸出的S的值為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=lnx-x3與g(x)=x3-ax的圖象上存在關(guān)于x軸的對(duì)稱(chēng)點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,e)B.(-∞,e]C.$(-∞,\frac{1}{e})$D.$(-∞,\frac{1}{e}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}滿足lna1+$\frac{{ln{a_2}}}{2}+\frac{{ln{a_3}}}{3}+…+\frac{{ln{a_n}}}{n}$=2n,則數(shù)列{an}的前項(xiàng)的乘積為en(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合P={x|x2-2x-8≤0},Q={x|x≥a},(∁RP)∪Q=R,則a的取值范圍是( 。
A.(-2,+∞)B.(4,+∞)C.(-∞,-2]D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知?jiǎng)狱c(diǎn)A(xA,yA)在直線l:y=6-x上,動(dòng)點(diǎn)B在圓C:x2+y2-2x-2y-2=0上,若∠CAB=30°,則xA的最大值為( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若${(x-\frac{a}{x})^5}$的展示式中x3的系數(shù)為30,則實(shí)數(shù)a=( 。
A.-6B.6C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知{an}為無(wú)窮等比數(shù)列,且公比q>1,記Sn為{an}的前n項(xiàng)和,則下面結(jié)論正確的是( 。
A.a3>a2B.a1+a2>0C.$\{{a_n}^2\}$是遞增數(shù)列D.Sn存在最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案