分析 (Ⅰ)利用線面平行的判定定理證明DE∥平面ACF;
(Ⅱ)利用線面垂直的判定定理先證明BD⊥平面ACE,然后利用線面垂直的性質(zhì)證明BD⊥AE;
(Ⅲ)取BC中G,連結(jié)FG,推導(dǎo)出FG⊥底面ABCD,由此能求出三棱錐F-ABC的體積.
解答 證明:(Ⅰ)連接OF.由ABCD是正方形可知,點(diǎn)O為BD中點(diǎn).
又F為BE的中點(diǎn),∴OF∥DE.
又OF?面ACF,DE?面ACF,
∴DE∥平面ACF….(4分)
(II)由EC⊥底面ABCD,BD?底面ABCD,
∴EC⊥BD,
由ABCD是正方形可知,AC⊥BD,
又AC∩EC=C,AC、E?平面ACE,
∴BD⊥平面ACE,
又AE?平面ACE,
∴BD⊥AE…(9分)
解:(III)取BC中G,連結(jié)FG,
在四棱錐E-ABCD中,EC⊥底面ABCD,
∵FG是△BCE的中位線,∴FG⊥底面ABCD,
∵AB=$\sqrt{2}CE=2$,∴FG=$\frac{1}{2}EC=\frac{\sqrt{2}}{2}$,
∴三棱錐F-ABC的體積V=$\frac{1}{3}×{S}_{△ABC}×FG$=$\frac{1}{3}$×$\frac{1}{2}$×4×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{3}$.
點(diǎn)評 本題主要考查了空間直線和平面垂直的判定定理和性質(zhì)定理的應(yīng)用,要求熟練掌握相應(yīng)的定理,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{5}{3}$,5) | B. | (-$\frac{5}{3}$,0) | C. | [0,5] | D. | [-$\frac{5}{3}$,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x≤1} | B. | {x|-1<x<1} | C. | {x|x≥1或x≤-1} | D. | {x|x>1或x<-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com