13.下列命題正確的是(  )
A.對(duì)于任意向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$
B.若向量$\overrightarrow{a}$與$\overrightarrow$同向,且|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$.
C.向量$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線向量,則A、B、C、D四點(diǎn)一定共線
D.單位向量的模都相等

分析 根據(jù)零向量與任意向量共線,向量的定義,共線向量和單位向量的概念便可判斷每個(gè)選項(xiàng)的正誤,從而找出正確選項(xiàng).

解答 解:A.若$\overrightarrow=\overrightarrow{0}$,零向量與任意向量平行,$\overrightarrow{a}$與$\overrightarrow{c}$可以不平行,∴該選項(xiàng)錯(cuò)誤;
B.向量是矢量,不能比較大小,∴該選項(xiàng)錯(cuò)誤;
C.$\overrightarrow{AB}$與$\overrightarrow{CD}$共線,即$\overrightarrow{AB}∥\overrightarrow{CD}$,顯然A,B,C,D四點(diǎn)不一定共線,∴該選項(xiàng)錯(cuò)誤;
D.模為1的向量為單位向量,即單位向量的模相等,∴該選項(xiàng)正確.
故選:D.

點(diǎn)評(píng) 考查零向量與任意向量的關(guān)系,向量的概念,共線向量的概念,以及單位向量的概念.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=25,則S9=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知命題:“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”,分別寫出這個(gè)命題的逆命題,否命題,逆否命題,并分別判斷它們的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,a=1,B=45°,面積S=2,則△ABC的外接圓的直徑為( 。
A.$6\sqrt{2}$B.$4\sqrt{3}$C.5D.$5\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示,在正方體ABCD-A1B1C1D1中,E為棱D1C1的中點(diǎn),試求$\overrightarrow{{A}_{1}{C}_{1}}$與$\overrightarrow{DE}$所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,若A=120°,a=2,b=$\frac{2\sqrt{3}}{3}$,則B=30° .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)A(-5,0),B(5,0),直線AM,BM的交點(diǎn)為M,AM,BM的斜率之積為$-\frac{16}{25}$,則點(diǎn)M的軌跡方程是(  )
A.$\frac{x^2}{25}-\frac{y^2}{16}=1$B.$\frac{x^2}{25}+\frac{y^2}{16}=1$
C.$\frac{x^2}{25}-\frac{y^2}{16}=1({x≠±5})$D.$\frac{x^2}{25}+\frac{y^2}{16}=1({x≠±5})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖O是等腰三角形ABC內(nèi)一點(diǎn),⊙O與△ABC的底邊BC交于M,N兩點(diǎn),與底邊上的高交于點(diǎn)G,且與AB,AC分別相切于E,F(xiàn)兩點(diǎn).
(I)證明EF∥BC.
(II)若AG等于⊙O的半徑,且$AE=MN=2\sqrt{3}$,求四邊形EDCF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知{an}是等差數(shù)列,公差d>0,Sn是其前n項(xiàng)和,a1a4=22,S4=26.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:${T_n}<\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案