精英家教網如圖,函數(shù)y=2cos(ωx+θ)(x∈R,0≤θ≤
π
2
)
的圖象與y軸交于點(0,
3
)
,且在該點處切線的斜率為-2.
(1)求θ和ω的值;
(2)已知點A(
π
2
,0)
,點P是該函數(shù)圖象上一點,點Q(x0,y0)是PA的中點,當y0=
3
2
,x0∈[
π
2
,π]
時,求x0的值.
分析:(1)根據(jù)(0,
3
)以及θ的范圍,求θ,利用導數(shù)和斜率的關系求ω的值;
(2)利用點A(
π
2
,0)
,點Q(x0,y0)求出P,點P是該函數(shù)圖象上一點,代入表達式,利用y0=
3
2
,x0∈[
π
2
,π]
,求x0的值.
解答:解:(1)將x=0,y=
3
代入函數(shù)y=2cos(ωx+θ)得cosθ=
3
2

因為0≤θ≤
π
2
,所以θ=
π
6

又因為y'=-2ωsin(ωx+θ),y'|x=0=-2,θ=
π
6
,所以ω=2,
因此y=2cos(2x+
π
6
)

(2)因為點A(
π
2
,0)
,Q(x0,y0)是PA的中點,y0=
3
2
,
所以點P的坐標為(2x0-
π
2
3
)

又因為點P在y=2cos(2x+
π
6
)
的圖象上,所以cos(4x0-
6
)=
3
2

因為
π
2
x0≤π
,所以
6
≤4x0-
6
19π
6
,
從而得4x0-
6
=
11π
6
4x0-
6
=
13π
6

x0=
3
x0=
4
點評:本題考查y=Asin(ωx+φ)中參數(shù)的物理意義,導數(shù)的運算,考查分析問題解決問題的能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:江西省高考真題 題型:解答題

如圖,函數(shù)y=2cos(ωx+θ)(x∈R,0≤θ≤) 的圖象與y軸交于點(0,),且在該點處切線的斜率為-2,
(1)求θ和ω的值;
(2)已知點A(,0),點P是該函數(shù)圖象上一點,點Q(x0,y0)是PA的中點,當y0=,x0∈[,π]時,求x0的值。

查看答案和解析>>

科目:高中數(shù)學 來源:江西省高考真題 題型:解答題

如圖,函數(shù)y=2cos(ωx+θ)(x∈R,ω>0,0≤θ≤) 的圖象與y軸交于點(0,),且該函數(shù)的最小正周期為π,
(1)求θ和ω的值;
(2)已知點A(,0),點P是該函數(shù)圖象上一點,點Q(x0,y0)是PA的中點,當y0=,x0∈[,π]時,求x0的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,函數(shù)y=2cos(ωx+θ) (x∈R,0≤θ)的圖象與y軸交于點(0,),且在該點處切線的斜率為一2.

(1)求θ和ω的值;

(2)已知點A(,0),點P是該函數(shù)圖象上一點,點Q(x0,y0)是PA的中點,當y0,x∈[,π]時,求x0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

18. 如圖,函數(shù)y=2cos(ωx+θ) (x∈R,ω>0,0≤θ)的圖象與y軸交于點(0,),且該函數(shù)的最小正周期為π.

   (1)求θ和ω的值;

   (2)已知點A(,0),點P是該函數(shù)圖象上一點,點Q(x0,y0)是PA的中點,當y0,x0∈[,π]時,求x0的值.

查看答案和解析>>

同步練習冊答案