4.命題p:?a∈(0,1)∪(1,+∞),函數(shù)f(x)=loga(x-1)的圖象過點(2,0),命題q:?x∈N,x3<x2.則(  )
A.p假q假B.p真q假C.p假q真D.p真q真

分析 根據(jù)指數(shù)函數(shù)的單調(diào)性及冪函數(shù)圖象和性質(zhì),分析命題p,q的真假,可得答案.

解答 解:當x=2時,loga(x-1)=loga1=0恒成立,
故命題p:?a∈(0,1)∪(1,+∞),函數(shù)f(x)=loga(x-1)的圖象過點(2,0),為真命題;
?x∈N,x3≥x2恒成立,故命題q:?x∈N,x3<x2為假命題,
故選:B

點評 本題以命題的真假判斷與應用為載體,考查了指數(shù)函數(shù)的圖象和性質(zhì)及冪函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知直線l過點(3,1)且與直線x+y-1=0平行.
(1)求直線l的方程;
(2)若將直線l與x軸、y軸所圍成的平面圖形繞y軸旋轉(zhuǎn)一周得到一個幾何體,求這個幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)x,y,z,w∈R,且滿足x2+y2+z2+w2=1,則P=xy+2yz+zw的最大值是$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,該幾何體是由一個直三棱柱ADE-BCF和一個正四棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2.
(1)證明:平面PAD⊥平面ABFE;
(2)求正四棱錐P-ABCD的高h,使得二面角C-AF-P的余弦值是$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{4}{x}+1,x≥4}\\{lo{g}_{2}x,0<x<4}\end{array}\right.$,則f(8)=$\frac{3}{2}$,若f(a)=f(b)=c,f′(b)<0,則a,b,c的大小關(guān)系是b>a>c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖是一個空間幾何體的三視圖,則該幾何體為六棱臺.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.一個幾何體的正視圖和俯視圖都是邊長為6cm的正方形,側(cè)視圖是等腰直角三角形(如圖所示),這個幾何體的體積是( 。
A.216cm3B.54cm3C.36cm3D.108cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(虛)線畫出的是某多面體的三視圖,則該多面體的體積為( 。
A.64B.$\frac{64}{3}$C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知點P(2,$\sqrt{3}$),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=\sqrt{3}+t}\\{\;}\end{array}\right.$(t為參數(shù)).以平面直角坐標系坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=4cos(θ-$\frac{π}{3}$).
(1)求曲線C的直角坐標方程和直線l的極坐標方程;
(2)設(shè)曲線與直線l相交于A、B兩點,求|PA|•|PB|的值.

查看答案和解析>>

同步練習冊答案