9.已知等差數(shù)列{an}滿足:a1+a5=4,則數(shù)列{2${\;}^{{a}_{n}}$}的前5項(xiàng)之積為1024(用數(shù)字作答)

分析 根據(jù)等差數(shù)列的性質(zhì)可得a1+a5=a2+a4=2a3=4,即可求出前5項(xiàng)和,再根據(jù)指數(shù)冪的運(yùn)算性質(zhì)即可求出答案.

解答 解:∵等差數(shù)列{an}滿足:a1+a5=4,
∴a1+a5=a2+a4=2a3=4,
∴a1+a5+a2+a4+a3=4+4+2=10,
∴數(shù)列{2${\;}^{{a}_{n}}$}的前5項(xiàng)之積為2${\;}^{{a}_{1}+{a}_{2}+{a}_{3}+{a}_{4}+{a}_{5}}$=210=1024,
故答案為:1024

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)和指數(shù)冪的運(yùn)算性質(zhì),屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(mod m),例如10=2(mod 4),下面程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的i等于( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=(sinx+\sqrt{3}cosx)(cosx-\sqrt{3}sinx)$的最小正周期是( 。
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)tanα=3,則$\frac{sin(α-π)+cos(π-α)}{sin(\frac{π}{2}-α)+cos(\frac{π}{2}+α)}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某校高三年級(jí)準(zhǔn)備舉行一次座談會(huì),其中三個(gè)班被邀請(qǐng)的學(xué)生數(shù)如表所示:
 班級(jí) 高三(1) 高三(2) 高三(3)
 人數(shù) 3 3 4
(Ⅰ)若從這10名學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言,求這2名學(xué)生不屬于同一班級(jí)的概率;
(Ⅱ)若從這10名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,設(shè)X為來自高三(1)班的學(xué)生人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在多面體ABCDE中,DB⊥平面ABC,AE⊥平面ABC,且△ABC是的邊長為4的等邊三角形,AE=2,CD與平面ABDE所成角的余弦值為$\frac{\sqrt{10}}{4}$,F(xiàn)是線段CD上一點(diǎn).
(Ⅰ)若F是線段CD的中點(diǎn),證明:平面CDE⊥面DBC;
(Ⅱ)求二面角B-EC-D的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.以40km/h向北偏東30°航行的科學(xué)探測船上釋放了一個(gè)探測氣球,氣球順風(fēng)向正東飄去,3min后氣球上升到1km處,從探測船上觀察氣球,仰角為30°,求氣球的水平飄移速度是20km/h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.連續(xù)擲兩次骰子,以先后得到的點(diǎn)數(shù)m,n為點(diǎn)P的坐標(biāo)(m,n),那么點(diǎn)P在圓x2+y2=17內(nèi)部(不包括邊界)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{5}{18}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.?dāng)?shù)列{an}是公差不為0的等差數(shù)列,且a1,a4,a5恰為某等比數(shù)列的前三項(xiàng),那么該等比數(shù)列公比的值 為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案