13.平面內(nèi)有兩個(gè)定點(diǎn)A(1,0),B(1,-2),設(shè)點(diǎn)P到A的距離為d1,到B的距離為d2,且$\frac{d_1}{d_2}=\sqrt{2}$.
(1)求點(diǎn)P的軌跡C的方程;
(2)點(diǎn)M(0,1)與點(diǎn)N關(guān)于直線x-y=0對(duì)稱,問:是否存在過點(diǎn)N的直線l,l與軌跡C相交于E、F兩點(diǎn),且使三角形${S_{△OEF}}=2\sqrt{2}$(O為坐標(biāo)原點(diǎn))?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

分析 (1)設(shè)P(x,y),利用兩點(diǎn)間距離公式能求出點(diǎn)P的軌跡C的方程.
(2)求出N(1,0),當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=1,不成立;當(dāng)直線l的斜率成立時(shí),設(shè)直線l的方程為y=k(x-1),聯(lián)立$\left\{\begin{array}{l}{y=k(x-1)}\\{{x}^{2}+{y}^{2}-2x+8y+9=0}\end{array}\right.$,得(1+k2)x2-(2k2-8k+2)x+k2-8k+9=0,由此利用根的判別式、點(diǎn)到直線的距離公式、弦長(zhǎng)公式能求出存在過點(diǎn)N的直線l,l與軌跡C相交于E、F兩點(diǎn),且使三角形${S_{△OEF}}=2\sqrt{2}$.

解答 解:(1)設(shè)P(x,y),
則$ip32tlo_{1}=\sqrt{(x-1)^{2}+{y}^{2}}$,d2=$\sqrt{({x}_{\;}-1)^{2}+(y+2)^{2}}$,
∵$\frac{d_1}{d_2}=\sqrt{2}$,
∴$\frac{\sqrt{(x-1)^{2}+{y}^{2}}}{\sqrt{(x-1)^{2}+(y+2)^{2}}}$=$\sqrt{2}$,
整理,得:x2+y2-2x+8y+9=0.
∴點(diǎn)P的軌跡C的方程為x2+y2-2x+8y+9=0.
(2)不存在過點(diǎn)N的直線l,l與軌跡C相交于E、F兩點(diǎn),且使三角形${S_{△OEF}}=2\sqrt{2}$.
理由如下:
∵點(diǎn)M(0,1)與點(diǎn)N關(guān)于直線x-y=0對(duì)稱,∴N(1,0),
當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=1,
聯(lián)立$\left\{\begin{array}{l}{x=1}\\{{x}^{2}+{y}^{2}-2x+8y+9=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=-2-2\sqrt{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=1}\\{y=-2+2\sqrt{2}}\end{array}\right.$,
此時(shí)S△OEF=$\frac{1}{2}×1×4\sqrt{2}=2\sqrt{2}$,成立;
當(dāng)直線l的斜率成立時(shí),設(shè)直線l的方程為y=k(x-1),
聯(lián)立$\left\{\begin{array}{l}{y=k(x-1)}\\{{x}^{2}+{y}^{2}-2x+8y+9=0}\end{array}\right.$,得(1+k2)x2-(2k2-8k+2)x+k2-8k+9=0,
△>0,設(shè)E(x1,y1),N(x2,y2),則${x}_{1}+{x}_{2}=\frac{2{k}^{2}-8k+2}{1+{k}^{2}}$,${x}_{1}{x}_{2}=\frac{{k}^{2}-8k+9}{1+{k}^{2}}$,
點(diǎn)O到直線y=k(x-1)的距離d=$\frac{|-k|}{\sqrt{{k}^{2}+1}}$=$\frac{|k|}{\sqrt{{k}^{2}+1}}$,
|EF|=$\sqrt{(1+{k}^{2})[(\frac{2{k}^{2}-8k+2}{1+{k}^{2}})^{2}-4×\frac{{k}^{2}-8k+9}{1+{k}^{2}}]}$=$\sqrt{\frac{32{k}^{2}-32}{1+{k}^{2}}}$,
∵${S_{△OEF}}=2\sqrt{2}$,
∴S△OEF=$\frac{1}{2}×|EF|×d$=$\frac{1}{2}×$$\sqrt{\frac{32{k}^{2}-32}{1+{k}^{2}}}$×$\frac{|k|}{\sqrt{{k}^{2}+1}}$=2$\sqrt{2}$,
整理,得3k2=-1,不成立,
綜上,存在過點(diǎn)N的直線l:x=1,l與軌跡C相交于E、F兩點(diǎn),且使三角形${S_{△OEF}}=2\sqrt{2}$.

點(diǎn)評(píng) 本題考查兩點(diǎn)距離公式的求法,考查滿足條件的直線是否存在的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意根的判別式、點(diǎn)到直線的距離公式、弦長(zhǎng)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+$\frac{a}{x}$(a>1).
(1)若函數(shù)f(x)的圖象在x=1處的切線斜率為-1,求該切線與兩坐標(biāo)軸圍成的三角形的面積;
(2)若函數(shù)f(x)在區(qū)間[1,e]上的最小值是2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)A={x|x使$\sqrt{x+2}$有意義},B={(x,y)|y=x2},則A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知?jiǎng)狱c(diǎn)P與點(diǎn)A(-$\sqrt{3}$,0)和點(diǎn)B($\sqrt{3}$,0)連接的斜率之積為-$\frac{2}{3}$,點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程;
(2)Q為曲線C上位于x軸上方的動(dòng)點(diǎn),直線AQ、BQ分別交直線y=$\sqrt{3}$于點(diǎn)M,N,求△QMN面積的最小值;
(3)若直線l:mx+y+1=0與曲線C交于D、F兩點(diǎn),是否存在實(shí)數(shù)m,使|$\overrightarrow{OD}+\overrightarrow{OF}$|=|$\overrightarrow{OD}-\overrightarrow{OF}$|成立?若存在,求m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知?jiǎng)狱c(diǎn)P到直線x=-$\frac{1}{2}$的距離等于到定點(diǎn)C($\frac{1}{2}$,0)的距離.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若在y軸上截距為2的直線l與點(diǎn)P的軌跡交于M、N兩點(diǎn),O為坐標(biāo)原點(diǎn),且以MN為直徑的圓過原點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它過點(diǎn)(0,1),離心率為$\frac{2\sqrt{5}}{5}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C的左焦點(diǎn)F作直線l交橢圓C于G,H兩點(diǎn),交y軸于點(diǎn)M,若$\overrightarrow{MG}=m\overrightarrow{FG}$,$\overrightarrow{MH}$=n$\overrightarrow{FH}$,判斷m+n是否為定值,若為定值,請(qǐng)求出該定值,若不是請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)橢圓中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{2}}{2}$,橢圓上一點(diǎn)P到兩焦點(diǎn)的距離之和等于$\sqrt{6}$.
(1)求橢圓方程;
(2)若直線x+y+m=0交橢圓于A、B兩點(diǎn),且OA⊥OB,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在三棱錐P-ABC中,已知PA⊥底面ABC,AB⊥BC,E,F(xiàn)分別是線段PB,PC上的動(dòng)點(diǎn).則下列說法錯(cuò)誤的是( 。
A.當(dāng)AE⊥PB時(shí),△AEF-定為直角三角形
B.當(dāng)AF⊥PC時(shí),△AEF-定為直角三角形
C.當(dāng)EF∥平面ABC時(shí),△AEF-定為直角三角形
D.當(dāng)PC⊥平面AEF時(shí),△AEF-定為直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對(duì)任意實(shí)數(shù)m,n定義運(yùn)算⊕:m⊕n=$\left\{\begin{array}{l}n,m-n≥1\\ m,m-n<1\end{array}$,已知函數(shù)f(x)=(x2-1)⊕(4+x),若函數(shù)F(x)=f(x)-b恰有三個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍為-1<b≤2.

查看答案和解析>>

同步練習(xí)冊(cè)答案