某鹽場(chǎng)有甲、乙兩套設(shè)備包裝食鹽,在自動(dòng)包裝傳送帶上,每隔3分鐘抽一包稱其重量是否合格,分別記錄數(shù)據(jù)如下:
甲套設(shè)備:504,510,505,490,485,485,515,510,496,500;
乙套設(shè)備:496,502,501,499,505,498,499,498,497,505.
(1)試確定這是何種抽樣方法?
(2)比較甲、乙兩套設(shè)備的平均值與方差,說(shuō)明哪套包裝設(shè)備誤差較少?
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差,眾數(shù)、中位數(shù)、平均數(shù)
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)由題意可知這種抽樣方法是系統(tǒng)抽樣,(2)利用公式求出平均值與方差.
解答: 解:(1)根據(jù)系統(tǒng)抽樣方法的定義,可知這種抽樣方法是系統(tǒng)抽樣.
(2)甲套設(shè)備的平均值、方差分別為
.
x1
=
1
10
(504+510+505+490+485+485+515+510+496+500)
=500;
s12=
1
10
[(504-500)2+(510-500)2+
…+(500-500)2]=103.2;
乙套設(shè)備的平均值、方差分別為
.
x2
=
1
10
(496+502+501+499+505+498+499+498+497+505)
=500;
s22=
1
10
[(496-500)2+(502-500)2+
…+(505-500)2]=9;
可見(jiàn)
.
x1
=
.
x2
s12s22,所以乙套設(shè)備較甲套設(shè)備更穩(wěn)定,誤差較少.
點(diǎn)評(píng):本題考查了抽樣的方法的分別,同時(shí)考查了數(shù)字特征的求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x2-
1
x
)n
展開(kāi)式的二項(xiàng)式系數(shù)之和為32,則展開(kāi)式中含x4的項(xiàng)的系數(shù)是( 。
A、10B、-10C、-5D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某售貨員負(fù)責(zé)在甲、乙、丙三個(gè)柜臺(tái)上售貨,如果在某一小時(shí)內(nèi)各柜臺(tái)不需要售貨員照顧的概率分別為0.9,0.8,0.7,假定各個(gè)柜臺(tái)是否需要照顧相互之間沒(méi)有影響,求這個(gè)小時(shí)內(nèi):
(1)只有丙柜臺(tái)需要售貨員照顧的概率?
(2)三個(gè)柜臺(tái)至少有一個(gè)需要售貨員照顧的概率?
(3)三個(gè)柜臺(tái)至多有一個(gè)需要售貨員照顧的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1(a∈R).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=x2-2bx+4.當(dāng)a=
1
4
時(shí),若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)b取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四棱錐P-ABCD中,AB∥CD,CD=2AB,M為PC的中點(diǎn).求證:BM∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=(m2-8m+15)+(m2-5m+4)i(m∈R).
(1)若復(fù)數(shù)z<0,求實(shí)數(shù)m的值;
(2)若復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
1
2
x2
+bx+c.
(1)若f(x)有極值,求b的取值范圍;
(2)若f(x)在x=1處取得極值,當(dāng)x∈[-1,2]時(shí),則f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定數(shù)字0、1、2、3、5、9每個(gè)數(shù)字最多用一次
(1)可組成多少個(gè)四位數(shù)?
(2)可組成多少個(gè)四位奇數(shù)?
(3)可組成多少個(gè)四位偶數(shù)?
(4)可組成多少個(gè)整數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sin2x-1,cosx),
b
=(1,2cosx).設(shè)函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期及x∈[0,
π
2
]時(shí)的最小值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案