已知點(diǎn)為雙曲線(xiàn)的左、右焦點(diǎn),過(guò)作垂直于軸的直線(xiàn),在軸上方交雙曲線(xiàn)于點(diǎn),且.圓的方程是
(1)求雙曲線(xiàn)的方程;
(2)過(guò)雙曲線(xiàn)上任意一點(diǎn)作該雙曲線(xiàn)兩條漸近線(xiàn)的垂線(xiàn),垂足分別為、,求的值;
(3)過(guò)圓上任意一點(diǎn)作圓的切線(xiàn)交雙曲線(xiàn)、兩點(diǎn),中點(diǎn)為,求證:
(1) ;(2);(3)證明見(jiàn)解析.

試題分析:(1)從雙曲線(xiàn)方程中發(fā)現(xiàn)只有一個(gè)參數(shù),因此我們只要找一個(gè)關(guān)系式就可求解,而這個(gè)關(guān)系式在中,,,通過(guò)直角三角形的關(guān)系就可求得;(2)由(1)知雙曲線(xiàn)的漸近線(xiàn)為,這兩條漸近線(xiàn)在含雙曲線(xiàn)那部分的夾角為鈍角,因此過(guò)雙曲線(xiàn)上的點(diǎn)作該雙曲線(xiàn)兩條漸近線(xiàn)的垂線(xiàn),為銳角,這樣這題我們只要認(rèn)真計(jì)算,設(shè)點(diǎn)坐標(biāo)為,由點(diǎn)到直線(xiàn)距離公式求出距離,利用兩條直線(xiàn)夾角公式求出,從而得到向量的數(shù)量積;(3)首先 等價(jià)于,因此設(shè),我們只要證,而可以由切線(xiàn)的方程與雙曲線(xiàn)方程聯(lián)立方程組得到,再借助切線(xiàn)方程得到,驗(yàn)證下是否有,注意上述情形是在時(shí)進(jìn)行的,而時(shí),切線(xiàn)為,直接驗(yàn)證即可.
試題解析:(1)設(shè)的坐標(biāo)分別為
因?yàn)辄c(diǎn)在雙曲線(xiàn)上,所以,即,所以 
中,,,所以           2分
由雙曲線(xiàn)的定義可知:
故雙曲線(xiàn)的方程為:                                     4分
(2)由條件可知:兩條漸近線(xiàn)分別為        5分
設(shè)雙曲線(xiàn)上的點(diǎn),設(shè)兩漸近線(xiàn)的夾角為,則
則點(diǎn)到兩條漸近線(xiàn)的距離分別為   7分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034443270659.png" style="vertical-align:middle;" />在雙曲線(xiàn)上,所以
,
所以        10分
(3)由題意,即證:。
設(shè),切線(xiàn)的方程為:                   11分
①當(dāng)時(shí),切線(xiàn)的方程代入雙曲線(xiàn)中,化簡(jiǎn)得:

所以:
  13分
所以            15分
②當(dāng)時(shí),易知上述結(jié)論也成立. 所以        16分
綜上,,所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線(xiàn)ly軸上的截距為m,直線(xiàn)l與橢圓相交于A,B兩個(gè)不同點(diǎn).

(1)求實(shí)數(shù)m的取值范圍;
(2)證明:直線(xiàn)MA,MBx軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線(xiàn)的一條漸近線(xiàn)方程是,它的一個(gè)焦點(diǎn)在拋物線(xiàn)的準(zhǔn)線(xiàn)上,點(diǎn)是雙曲線(xiàn)右支上相異兩點(diǎn),且滿(mǎn)足為線(xiàn)段的中點(diǎn),直線(xiàn)的斜率為
(1)求雙曲線(xiàn)的方程;
(2)用表示點(diǎn)的坐標(biāo);
(3)若,的中垂線(xiàn)交軸于點(diǎn),直線(xiàn)軸于點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,,且所在直線(xiàn)的斜率之積等于
(1)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線(xiàn);
(2)當(dāng)時(shí),過(guò)點(diǎn)的直線(xiàn)交曲線(xiàn)兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(不重合), 試問(wèn):直線(xiàn)軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)一個(gè)焦點(diǎn)為,且離心率的橢圓上下兩頂點(diǎn)分別為,直線(xiàn)交橢圓兩點(diǎn),直線(xiàn)與直線(xiàn)交于點(diǎn).
(1)求橢圓的方程;
(2)求證:三點(diǎn)共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)在直線(xiàn)上運(yùn)動(dòng),過(guò)點(diǎn)垂直的直線(xiàn)和線(xiàn)段的垂直平分線(xiàn)相交于點(diǎn)
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)(1)中的軌跡上的定點(diǎn)作兩條直線(xiàn)分別與軌跡相交于,兩點(diǎn).試探究:當(dāng)直線(xiàn),的斜率存在且傾斜角互補(bǔ)時(shí),直線(xiàn)的斜率是否為定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F是橢圓C:+=1(a>b>0)的右焦點(diǎn),點(diǎn)P在橢圓C上,線(xiàn)段PF與圓(x-2+y2=相切于點(diǎn)Q,且=2,則橢圓C的離心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,F(xiàn)1,F(xiàn)2是橢圓C1+y2=1與雙曲線(xiàn)C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形, 則C2的離心率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C1=1,橢圓C2C1的短軸為長(zhǎng)軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)直線(xiàn)l與橢圓C2相交于不同的兩點(diǎn)A、B,已知A點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,y0)在線(xiàn)段AB的垂直平分線(xiàn)上,且=4,求直線(xiàn)l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案