(滿分12分)
已知二次函數(shù)滿足:,且
解集為
(1)求的解析式;
(2)設(shè),若上的最小值為-4,求的值.

(1)(2)

解析試題分析:(1)∵ ∴ 即 ① ……2分
又∵的解集為
的兩根且a>0. 
 ②         ③           …………5分
由①②③得:a=2,b=1,c=-3
                                   …………6分
(2) 其對(duì)稱軸方程為
①若即m<-3時(shí),
 得不符合題意          …………8分
②若時(shí),,
解得:符合                   …………10分
③若即m>9時(shí),
 得不符合題意
                                          …………12分
考點(diǎn):利用函數(shù)性質(zhì)求二次函數(shù)解析式及最值
點(diǎn)評(píng):本題第二問(wèn)需討論拋物線對(duì)稱軸與給定區(qū)間的關(guān)系,從而確定最值點(diǎn)的位置,對(duì)學(xué)生有一定的難度

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量
(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù)
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)是多少元?(總收益=總成本+利潤(rùn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分16分)
已知函數(shù)
(1)若上的最大值為,求實(shí)數(shù)的值;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)其中.
(Ⅰ)證明:上的減函數(shù);
(Ⅱ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是定義在上的偶函數(shù),當(dāng)時(shí), 。
(1)用分段函數(shù)形式寫出上的解析式;   
(2)畫出函數(shù)的大致圖象;并根據(jù)圖像寫出的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是增函數(shù),在(0,1)為減函數(shù).
(I)求的表達(dá)式;
(II)求證:當(dāng)時(shí),方程有唯一解;
(Ⅲ)當(dāng)時(shí),若內(nèi)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(11分) 已知函數(shù)在定義域上為增函數(shù),且滿足
(1)求的值           (2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
二次函數(shù).
(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(2)討論函數(shù)在區(qū)間上的單調(diào)性;
(3)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
(1)化簡(jiǎn):;
(2)已知的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案