12.甲乙兩人從1,2,3,…,10中各任取一數(shù)(不重復(fù)),已知甲取到的數(shù)是5的倍數(shù),則甲數(shù)大于乙數(shù)的概率為$\frac{13}{18}$.

分析 先求出基本事件總數(shù)n=$8×2+{A}_{2}^{2}$=18,再利用列舉法求出甲數(shù)小于乙數(shù)包含的基本基本事件,由此能求出甲數(shù)大于乙數(shù)的概率.

解答 解:甲乙兩人從1,2,3,…,10中各任取一數(shù)(不重復(fù)),甲取到的數(shù)是5的倍數(shù),
基本事件總數(shù)n=$8×2+{A}_{2}^{2}$=18,
甲數(shù)小于乙數(shù)的基本事件有:
(5,6),(5,7),(5,8),(5,9),(5,10),
∴甲數(shù)大于乙數(shù)的概率為p=1-$\frac{5}{18}$=$\frac{13}{18}$.
故答案為:$\frac{13}{18}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.據(jù)俄羅斯新羅西斯克2015年5月17日電 記者吳敏、鄭文達(dá)報(bào)道:當(dāng)?shù)貢r(shí)間17日,參加中俄“海上聯(lián)合-2015(Ⅰ)”軍事演習(xí)的9艘艦艇抵達(dá)地中海預(yù)定海域,混編組成海上聯(lián)合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時(shí),輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇.
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說(shuō)明你的推理過(guò)程;
(3)是否存在v,使得小艇以v海里/小時(shí)的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知圓的半徑為πcm,則120°的圓心角所對(duì)的弧長(zhǎng)是( 。
A.$\frac{π}{3}$cmB.$\frac{{π}^{2}}{3}$cmC.$\frac{2π}{3}$cmD.$\frac{2{π}^{2}}{3}$cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列說(shuō)法正確的是( 。
A.一個(gè)人打靶,打了10發(fā)子彈,有7發(fā)子彈中靶,因此這個(gè)人中靶的概率為0.7
B.一個(gè)同學(xué)做擲硬幣試驗(yàn),擲了6次,一定有3次“正面朝上”
C.某地發(fā)行福利彩票,其回報(bào)率為47%,有個(gè)人花了100元錢(qián)買彩票,一定會(huì)有47元的回報(bào)
D.大量試驗(yàn)后,一個(gè)事件發(fā)生的頻率在0.75附近波動(dòng),可以估計(jì)這個(gè)事件發(fā)生的概率為0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

,的前項(xiàng)和.在中,正數(shù)的個(gè)數(shù)是( )

A.25 B.50 C.75 D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.復(fù)數(shù)z=(a+1)+(a2-3)i,若z<0,則實(shí)數(shù)a的值是(  )
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}lgx,x≥1\\ 1-3x,x<1\end{array}\right.$,則f(f(-3))=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=2x+x2-xln2-2,若函數(shù)g(x)=|f(x)|-loga(x+2)(a>1)在區(qū)間[-1,1]上有4個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1,2)B.(2,+∞)C.[3${\;}^{\frac{1}{1-ln2}}$,+∞)D.(2,3${\;}^{\frac{1}{1-ln2}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高二理下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

面對(duì)某種流感病毒,各國(guó)醫(yī)療科研機(jī)構(gòu)都在研究疫苗,現(xiàn)有A、B、C三個(gè)獨(dú)立的研究機(jī)構(gòu)在一定的時(shí)期研制出疫苗的概率分別為.求:

(1)他們能研制出疫苗的概率;

(2)至多有一個(gè)機(jī)構(gòu)研制出疫苗的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案