3.在邊長為2的菱形ABCD中,∠BAD=120°,則$\overrightarrow{AB}$在$\overrightarrow{AC}$方向上的投影為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 利用菱形的性質(zhì)以及平面向量的投影定義,只要求出$\overrightarrow{AB}$的模長與兩個向量夾角的余弦值即可.

解答 解:因為邊長為2的菱形ABCD中,∠BAD=120°,
則$\overrightarrow{AB}$在$\overrightarrow{AC}$方向上的投影為$|\overrightarrow{AB}|cos∠BAC$=2×cos60°=1;
故選C.

點評 本題考查了平面向量的幾何意義即向量的投影;明確投影的意義是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.從總體中抽取一個樣本:3、7、4、6、5,則總體標準差的點估計值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點P(-4,3)在角α終邊上.
(Ⅰ)求sinα、cosα和tanα的值;
(Ⅱ)求$\frac{{{{sin}^2}(α-\frac{π}{2})tan(π-α)sin(π-α)}}{{cos(α-3π)cos(\frac{3π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓$\frac{x^2}{4}+{y^2}$=1,P為x軸上一個動點,PA、PB為該橢圓的兩條切線,A、B為切點,則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為4$\sqrt{5}$-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.數(shù)列{an}的通項公式是an=(-1)n(3n-2),則該數(shù)列的前100項之和為(  )
A.-200B.-150C.200D.150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.數(shù)列{an}的通項公式${a_n}=cos\frac{nπ}{2}$,其前n項和為Sn,則S2015等于( 。
A.1008B.2015C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某中學(xué)對甲、乙兩文班進行數(shù)學(xué)測試,按照120分及以上為優(yōu)秀,否則為非優(yōu)秀統(tǒng)計成績得下表:
優(yōu)秀非優(yōu)秀合計
302050
203050
合計5050100
(1)用分層抽樣的方法在優(yōu)秀學(xué)生中選取5人,甲班抽多少人?
(2)從上述5人中選2人,求至少有1名乙班學(xué)生的概率;
(3)有多大的把握認為“成績與班級有關(guān)”?
D0.050.010.0050.001
k23.8416.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.關(guān)于x的方程$\sqrt{4-{x^2}}-kx+2k-3=0$有兩個不同實根時,實數(shù)k的取值范圍是$\frac{5}{12}<k≤\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.點P到A(1,0)和直線x=-1的距離相等,且P到直線y=x的距離等于$\frac{{\sqrt{2}}}{2}$,這樣的點P共有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案