已知函數(shù)f(x)=|x|+
x2
,判斷并證明函數(shù)f(x)的奇偶性.
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義,即可得到結(jié)論.
解答: 解:函數(shù)的定義域為R,
則f(-x)=|x|+
x2
=f(x),
故函數(shù)是偶函數(shù).
點評:本題主要考查函數(shù)奇偶性的判斷,根據(jù)奇偶性的定義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(sinx+cosx)sin2x
sinx
(x≠kπ,k∈z).
(1)求函數(shù)f(x)的最大值、最小值及最小正周期;
(2)求函數(shù)f(x)在(
π
2
,π)上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=0,且f(x+1)=f(x)+x+1,求y=f(x2-2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線C1:有y2=4x的焦點與橢圓C2的右焦點重合,橢圓的上頂點為B,右頂點為A,橢圓的左、右焦點為F1、F2,3|
F1B
|cos∠BF1F2=
3
|
OB
|
(Ⅰ)求橢圓C2的標(biāo)準(zhǔn)方程;
(Ⅱ)若斜率為k(k>0)的直線l,過點D(0,2),且與橢圓C2交于M,N兩點.H為M,N的中點,且
OH
AB
,求斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E、F分別是AB、BB1、CC1的中點,AB=BC=AC=BB1=2.
(1)求證:AC1∥平面DEF;
(2)求二面角A-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+4
1-x
,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,由y=0,x=8,y=x2圍城的曲邊三角形,在曲線OB弧上求一點M,使得過M所作的y=x2的切線PQ與OA,AB圍城的三角形PQA的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M、N,定義M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).設(shè)A={y|y=x2-2x,x∈R},B={x|y=
1
-x
,x∈R},求A⊕B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
3≤2x+y≤9
6≤x-y≤9
,則z=2x+3y的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案