5.定積分${∫}_{0}^{1}$(x+sinx)dx的值為( 。
A.$\frac{3}{2}$-cos1B.$\frac{{π}^{2}}{2}$+1C.πD.$\frac{1}{2}$

分析 求出被積函數(shù)的原函數(shù),然后分別代入積分上限和積分下限后作差得答案.

解答 解:${∫}_{0}^{1}$(x+sinx)dx=($\frac{1}{2}$x2-cosx)|${\;}_{0}^{1}$=($\frac{1}{2}$-cos1)-(0-1)=$\frac{3}{2}$-cos1,
故選:A

點評 本題考查定積分,關(guān)鍵是求出被積函數(shù)的原函數(shù),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知△ABC,a、b分別為角A、B的對邊,設(shè)A(bcosα,bsinα),∠AOB=β,D為線段AB的中點.
定義:M(x1,y1),N(x2,y2)的中點坐標為$({\frac{{{x_1}+{x_2}}}{2}\;,\;\;\frac{{{y_1}+{y_2}}}{2}})$.
若a=2,b=1,且點D在單位圓上,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點G是△ABC的重心,過G作BC的平行線與AB,AC分別交于點E,F(xiàn),若$\overrightarrow{BC}$=$\overrightarrow{a}$,則$\overrightarrow{EF}$=$\frac{2}{3}$$\overrightarrow{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$f(x)=3sin\frac{x}{2}-2cos\frac{x}{2}$,將函數(shù)y=f(x)的圖象上所有點向右平移$\frac{π}{3}$個單位得到函數(shù)y=g(x)的圖象,若函數(shù)g(x)的最大值為g(θ),則$cos({θ+\frac{π}{6}})$為-$\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,已知$\frac{a-c}{a-b}$=$\frac{sin(A+C)}{sinA+sinC}$.
(Ⅰ)求角C的大小; 
(Ⅱ)若|$\overrightarrow{CA}$-$\frac{1}{2}$$\overrightarrow{CB}$|=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.觀察下列各式:55=3125,56=15625,57=78125,…,則52017的末四位數(shù)字為( 。
A.3125B.5625C.0625D.8125

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標系xOy中,一動圓經(jīng)過點($\frac{1}{2}$,0),且與直線x=-$\frac{1}{2}$相切,設(shè)該動圓圓心的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)P是曲線E上的動點,點B、C在y軸上,△PBC的內(nèi)切圓的方程為(x-1)2+y2=1,求△PBC面積的最小值及此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在y=sin|x|,y=|sinx|,y=sin(2x+$\frac{2π}{3}$),y=cos($\frac{x}{2}$+$\frac{2π}{3}$),y=cosx+|cosx|$y=tan\frac{1}{2}x+1$中,最小正周期為π的函數(shù)的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某三棱錐的三視圖如圖所示,則該三棱錐外接球的表面積為( 。
A.B.25πC.50πD.100π

查看答案和解析>>

同步練習(xí)冊答案