【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求不等式的解集;

(2)若對(duì)任意,不等式的解集為空集,求實(shí)數(shù)的取值范圍。

【答案】(1) ;(2) .

【解析】試題分析:1)當(dāng)a=1時(shí),分類(lèi)討論求得不等式的解集;

(2)(2)由題意可得對(duì)任意a∈[0,1], ,求得,可得b的范圍.

試題解析:

(1)當(dāng)時(shí), 等價(jià)于.

①當(dāng)時(shí),不等式化為,無(wú)解;

②當(dāng)時(shí),不等式化為,

解得;

③當(dāng)時(shí),不等式化為,解得

綜上所述,不等式的解集為

(2)因?yàn)椴坏仁?/span>的解集為空集,所以.

因?yàn)?/span> ,

當(dāng)且僅當(dāng)時(shí)去等號(hào),所以.

因?yàn)閷?duì)任意,不等式的解集為空集,所以.

以下給出兩種思路求的最大值.

思路1:令,所以 .

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.

所以

所以的取值范圍為.

思路2:令,因?yàn)?/span>,所以可設(shè) ,

,

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

所以的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856335)[選修4-4:坐標(biāo)系與參數(shù)方程]

以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知A(2,π),B(2, ),圓C的極坐標(biāo)方程為ρ2-6ρcos θ+8ρsin θ+21=0.F為圓C上的任意一點(diǎn).

(Ⅰ)寫(xiě)出圓C的參數(shù)方程;

(Ⅱ)求△ABF的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A是函數(shù)y=lg(20﹣8x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.

(1)若A∩B=,求實(shí)數(shù)a的取值范圍;

(2)若¬p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分13分)

已知函數(shù),其中

當(dāng)時(shí),求曲線在點(diǎn)處的切線方程

)證明: 在區(qū)間上恰有個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若時(shí)取到極值,求的值及的圖象在處的切線方程;

(2)若時(shí)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=,則下列結(jié)論中錯(cuò)誤的是(  )

A. AC⊥BE

B. EF∥平面ABCD

C. 三棱錐A-BEF的體積為定值

D. △AEF的面積與△BEF的面積相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,且以?xún)山裹c(diǎn)為直徑的圓的內(nèi)接正方形面積為2.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于 兩點(diǎn),在軸上是否存在點(diǎn),使直線的斜率之和為定值?若存在,求出點(diǎn)坐標(biāo)及該定值,若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到點(diǎn)的距離和它到直線的距離相等,記點(diǎn)的軌跡為.

(Ⅰ)求得方程;

(Ⅱ)設(shè)點(diǎn)在曲線上, 軸上一點(diǎn)(在點(diǎn)右側(cè))滿(mǎn)足.平行于的直線與曲線相切于點(diǎn),試判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,設(shè)圓4 cos 與直線l (R)交于A,B兩點(diǎn).

求以AB為直徑的圓的極坐標(biāo)方程

(Ⅱ)在圓任取一點(diǎn),在圓上任取一點(diǎn),求的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案