已知函數(shù)f(x)是定義域?yàn)镽的單調(diào)減函數(shù).
(Ⅰ)比較f(a2+1)與f(2a)的大小;
(Ⅱ)若f(a2)>f(a+6),求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)由(a-1)2≥0可得a2+1≥2a,結(jié)合函數(shù)f(x)是定義域?yàn)镽的單調(diào)減函數(shù),可得:f(a2+1)≤f(2a);
(Ⅱ)∵函數(shù)f(x)是定義域?yàn)镽的單調(diào)減函數(shù),f(a2)>f(a+6),可得:a2<a+6,解不等式可得實(shí)數(shù)a的取值范圍.
解答: 解:(Ⅰ)∵a2+1-2a=(a-1)2≥0,
∴a2+1≥2a,
又∵函數(shù)f(x)是定義域?yàn)镽的單調(diào)減函數(shù).
∴f(a2+1)≤f(2a);
(Ⅱ)∵函數(shù)f(x)是定義域?yàn)镽的單調(diào)減函數(shù),f(a2)>f(a+6),
∴a2<a+6,
解得a∈(-2,3).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),解二次不等式,是函數(shù)和不等式的簡(jiǎn)單綜合應(yīng)用,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一做直線運(yùn)動(dòng)的物體,其位移s與時(shí)間t的關(guān)系是s=3t-t2.(單位:米)
(1)求此物體的初速度;
(2)求此物體在t=2秒時(shí)的瞬時(shí)速度;
(3)求t=0秒到t=2秒時(shí)的平均速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,若a5=0,則有a1+a2+…+an=a1+a2+…+a9-n(n<9,n∈N+),若a10=0則有a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N+)根據(jù)上述規(guī)律,若a15=0,則有怎樣的等式?并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=1,|
b
|=
2

(Ⅰ)若
a
b
的夾角為60°,求|
a
+
b
|; 
(Ⅱ)若
a
-
b
a
垂直,求
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2,|
b
|=4.
(1)當(dāng)
a
b
時(shí),求|
a
+
b
|;
(2)當(dāng)
a
b
時(shí),求
a
b
;
(3)若
a
+2
b
與3
a
-
b
垂直,求向量
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把數(shù)列{2n+1}依次按第一個(gè)括號(hào)一個(gè)數(shù),第二個(gè)括號(hào)兩個(gè)數(shù),第三個(gè)括號(hào)三個(gè)數(shù),第四個(gè)括號(hào)四個(gè)數(shù),第五個(gè)括號(hào)一個(gè)數(shù),第六個(gè)括號(hào)兩個(gè)數(shù),…,循環(huán)下去,如:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),…,則第20個(gè)括號(hào)內(nèi)各數(shù)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖程框圖,則輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將全體正整數(shù)排成一個(gè)三角形數(shù)陣:
     
按照以上排列的規(guī)律,整數(shù)50排在第
 
行,第n行(n>3)從左向右數(shù)的第3個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足:|z|=1+3i-z,則z=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案