分析 (1)由函數的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數的解析式.
(2)利用正弦函數的定義域和值域,求得x∈[0,$\frac{π}{2}$]時,函數y=f(x)的值域.
(3)利用正弦函數的單調性,求得函數y=g(x)的單調遞減區(qū)間.
解答 解:(1)根據函數f(x)=Asin(ωx+ϕ)+B的一部分圖象,其中A>0,ω>0,|φ|<$\frac{π}{2}$,
可得A=4-2=2,B=2,$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$,∴ω=2.
再根據五點法作圖,可得2•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,∴f(x)=2sin(2x+$\frac{π}{6}$)+2.
(2)∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],∴y=f(x)∈[1,4].
(3)將函數y=f(x)的圖象向右平移$\frac{π}{4}$個單位長度,得到函數y=g(x)=2sin[2(x-$\frac{π}{4}$)+$\frac{π}{6}$]+2=2sin(2x-$\frac{π}{3}$)+2的圖象,
對于函數y=g(x)=2sin(2x-$\frac{π}{3}$)+2,令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,
故函數g(x)的單調增區(qū)間為[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.
點評 本題主要考查由函數y=Asin(ωx+φ)的部分圖象求解析式,由函數的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值.還考查了正弦函數的定義域和值域,正弦函數的單調性,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{5}$個單位長度 | B. | 向右平移$\frac{π}{5}$個單位長度 | ||
C. | 向左平移$\frac{π}{10}$個單位長度 | D. | 向右平移$\frac{π}{10}$個單位長度 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com