某程序框圖如圖所示,若輸入的n=10,則輸出的結(jié)果是
 

考點:程序框圖
專題:算法和程序框圖
分析:執(zhí)行程序框圖,若輸入的n=10,按照流程依次寫出每次循環(huán)S,n,T的值,當(dāng)n≥2不成立時,計算輸出S-T的值.
解答: 解:執(zhí)行程序框圖,有
n=10,S=0,T=0
n≥2成立,有S=10,n=9,T=9,n=8,
n≥2成立,有S=18,n=7,T=16,n=6,
n≥2成立,有S=24,n=5,T=21,n=4,
n≥2成立,有S=28,n=3,T=24,n=2,
n≥2成立,有S=30,n=1,T=25,n=0,
n≥2不成立,輸出S-T的值為30-25=5,
故答案為:5.
點評:本題主要考察程序框圖和算法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,
1
x+1
+
1
y
=2,求x+2y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運(yùn)貨卡車以每小時x千米的速度勻速行駛120千米(50≤x≤100)(單位:千米/小時).假設(shè)汽油的價格是每升2元,而汽車每小時耗油(2+
x2
360
)升,司機(jī)的工資是每小時12元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時,這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式組
x-a<1
2x-a>2
的解集為A.
(1)集合B=(1,3),若A⊆B,求a的取值范圍;
(2)若集合A中僅有2這一個整數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=sin(2x-
π
3
)的圖象,只需將函數(shù)y=sinx的圖象:
(1)先將每個x值縮小到原來的
1
2
倍,y值不變,再向右平移
π
6
個單位.
(2)先向右平移個
π
3
單位,再把每個x值縮小到原來的
1
2
倍,y值不變.
(3)先向右平移
π
6
個單位,再把每個x值縮小到原來的
1
2
倍,y值不變.
(4)先將每個x值縮小到原來的
1
2
倍,y值不變,再向左平移
6
個單位.
其中所有正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-lnx+
1
2
ax2
+(1-a)x+2.
(Ⅰ)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若0<x<1,求證:f(1+x)<f(1-x);
(Ⅲ)若A(x1,y1),B(x2,y2)為函數(shù)y=f(x)的圖象上的兩點,記k為直線AB的斜率,若x0=
x1+x2
2
,f′(x)為f(x)的導(dǎo)函數(shù),求證:f′(x0)>k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-a)2+(y-2)2=4與直線l:x+y-3=0,且直線l被圓C截得的弦長為2
2

(Ⅰ)求a的值;
(Ⅱ)當(dāng)a>0時,求過點(3,5)且與圓C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面平域D由下列約束條件確定:2x-3y+5≥0,x+2y-8≤0,x-5y+6≥0,當(dāng)點(x,y)在D上時,
(1)若z=3x-4y,則z的最大值是
 
,最小值是
 

(2)當(dāng)z=x2+y2時,則z的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(3x)=4x+1,則f(x)=
 
,f(27)=
 

查看答案和解析>>

同步練習(xí)冊答案