11.$f(x)=\sqrt{3}sinx-cosx$,求:
(1)求周期、振幅;
(2)求[0,π]在區(qū)間[0,π]上的值域.

分析 (1)利用輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,求得周期、振幅;
(2)x∈[0,π]時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),即得到f(x)的值域.

解答 解:函數(shù)$f(x)=\sqrt{3}sinx-cosx$,
化簡可得:f(x)=2sin(x-$\frac{π}{6}$).
(1)∴周期T=$\frac{2π}{1}=2π$、
振幅A=2.
(2)x∈[0,π]時(shí),
可得x-$\frac{π}{6}$∈[$-\frac{π}{6}$,$\frac{5π}{6}$],
∴sin(x-$\frac{π}{6}$)∈[$-\frac{1}{2}$,1],
那么f(x)的值域?yàn)閇-1,2].

點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({4,3})$,且$\overrightarrow a⊥({t\overrightarrow a+\overrightarrow b})$,則實(shí)數(shù)t=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.更相減損術(shù)是出自中國古代數(shù)學(xué)專著《九章算術(shù)》的一種算法,其內(nèi)容如下:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也.以等數(shù)約之.”右圖是該算法的程序框圖,如果輸入a=153,b=119,則輸出的a值是( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,${a_1}=-\frac{1}{2},2{S_{n+1}}={S_n}-1({n∈{N^*}})$
(I)求證:數(shù)列{Sn+1}是等比數(shù)列
(II)求數(shù)列{(1-2n)an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列哪個(gè)函數(shù)是周期為π的偶函數(shù)(  )
A.y=sin2xB.y=|sin2x|C.y=cos2xD.y=|cos2x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(4)=________;f(n)=________( 。
A.37 3n2-3n+1B.38 3n2-3n+2C.36 3n2-3nD.35 3n2-3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={1,2},B={x|x=a+b,a∈A,b∈A},則集合B中元素個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\vec a=({cos{{45}°},sin4{5°}})$,$\vec b=({cos{{15}°},sin{{15}°}})$,$\vec a•\vec b$=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=2ex,則(  )
A.f′(x)=f(x)+2B.f′(x)=f(x)C.f′(x)=3f(x)D.f′(x)=2f(x)

查看答案和解析>>

同步練習(xí)冊答案