【題目】已知正項(xiàng)數(shù)列滿足: .為數(shù)列的前項(xiàng)和.

(Ⅰ)求證:對任意正整數(shù),有;

(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,求證:對任意,總存在正整數(shù),使得時(shí), .

【答案】(Ⅰ)證明見解析;(Ⅱ)證明見解析.

【解析】試題分析:

(I)分類討論兩種情況,結(jié)合裂項(xiàng)求和即可證得題中的結(jié)論;

(II)結(jié)合(I)的結(jié)論的結(jié)論可知數(shù)列是單調(diào)遞增數(shù)列,構(gòu)造函數(shù),該函數(shù)在區(qū)間上單調(diào)遞增,然后結(jié)合數(shù)列的性質(zhì)即可證得題中的結(jié)論.

試題解析:

Ⅰ)證法一:因?yàn)?/span>,

時(shí), ,

,即,

當(dāng)時(shí), ,綜上, .

證法二:考慮到數(shù)列的前項(xiàng)和為,猜想,

當(dāng)時(shí),結(jié)論顯然成立.假設(shè)時(shí), 成立,

則當(dāng)時(shí),由,得

,結(jié)論成立.

綜上:對任意,有,

以下同解法一.

Ⅱ)由(Ⅰ)可知

.因?yàn)?/span>在區(qū)間上單調(diào)遞增,

所以

從而

當(dāng)時(shí), , ,

所以 ,

設(shè)為不小于的最小整數(shù),取 (),

當(dāng)時(shí), .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+bx+c滿足f(2﹣x)=f(2+x),f(0)>0,且f(m)=f(n)=0(m≠n),則log4m﹣ n的值是(
A.小于1
B.等于1
C.大于1
D.由b的符號確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廣播電臺為了了解某地區(qū)的聽眾對某個(gè)戲曲節(jié)目的收聽情況,隨機(jī)抽取了100名聽眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的聽眾日均收聽該節(jié)目的頻率分布直方圖,將日均收聽該節(jié)目時(shí)間不低于40分鐘的聽眾成為“戲迷”

(1)根據(jù)已知條件完成2×2列聯(lián)表,并判斷“戲迷”與性別是否有關(guān)?

“戲迷”

非戲迷

總計(jì)

10

55

總計(jì)

附:K2= ,

P(K2≥k)

0.05

0.01

k

3.841

6.635


(2)將上述調(diào)查所得到的頻率當(dāng)作概率.現(xiàn)在從該地區(qū)大量的聽眾中,采用隨機(jī)抽樣的方法每次抽取1名聽眾,抽取3次,記被抽取的3名聽眾中“戲迷”的人數(shù)為X,若每次抽取的結(jié)果相互獨(dú)立,求X的分布列,數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x|x﹣a|,若對于任意x1 , x2∈[3,+∞),x1≠x2 , 不等式 >0恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形是矩形, 平面, . , 分別是線段的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)解不等式f(x)< ;
(2)求函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,曲線C:(x﹣1)2+y2=1.直線l經(jīng)過點(diǎn)P(m,0),且傾斜角為 .以O(shè)為極點(diǎn),以x軸正半軸為極軸,建立坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))(…是自然對數(shù)的底數(shù)).

(1)求單調(diào)區(qū)間;

(2)討論在區(qū)間內(nèi)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的 ,則判斷框內(nèi)填入的條件可以是(
A.k≥7
B.k>7
C.k≤8
D.k<8

查看答案和解析>>

同步練習(xí)冊答案