8.已知$\overrightarrow a=(1,1)$,$\overrightarrow b=(1,0)$,則當(dāng)$|{\overrightarrow a-t\overrightarrow b}|$取最小值時(shí),實(shí)數(shù)t=1.

分析 利用數(shù)量積運(yùn)算性質(zhì)、函數(shù)的單調(diào)性即可得出.

解答 解:$|\overrightarrow{a}|$=$\sqrt{2}$,$|\overrightarrow|$=1,$\overrightarrow{a}•\overrightarrow$=1.
∴$|{\overrightarrow a-t\overrightarrow b}|$=$\sqrt{{\overrightarrow{a}}^{2}+{t}^{2}{\overrightarrow}^{2}-2t\overrightarrow{a}•\overrightarrow}$=$\sqrt{{t}^{2}-2t+2}$=$\sqrt{(t-1)^{2}+1}$取最小值時(shí),t=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算性質(zhì)、函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={y|y=log2x,x>1},B={x|y=$\frac{1}{\sqrt{1-2x}}$},則A∩B=( 。
A.{y|0<y<$\frac{1}{2}$}B.{y|0<y<1}C.{y|$\frac{1}{2}$<y<1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=x-{e^{\frac{x}{a}}}$(a>0),且y=f(x)的圖象在x=0處的切線l與曲y=ex相切,符合情況的切線( 。
A.有0條B.有1條C.有2條D.有3條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù)f'(x)滿足$xf'(x)+f(x)=\frac{lnx}{x}$,且$f(e)=\frac{1}{e}$,其中e為自然對(duì)數(shù)的底數(shù),則不等式$f(x)+e>x+\frac{1}{e}$的解集是( 。
A.$(0,\frac{1}{e})$B.(0,e)C.$(\frac{1}{e},e)$D.$(\frac{1}{e},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.電影院一排10個(gè)位置,甲、乙、丙三人去看電影,要求他們坐在同一排,那么他們每人左右兩邊都有空位且甲坐在中間的坐法有40種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x是實(shí)數(shù),i是虛數(shù)單位,且(1+xi)(x-i)=-i,則x=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x,y滿足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-3≤0\\ x≥0\\ y≥0\end{array}\right.$,則y+3x的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系xOy中,已知$\overrightarrow{OA}$=(1,0),$\overrightarrow{OB}$=(0,b),b∈R.若$\overrightarrow{OC}$=2$\overrightarrow{OA}$+$\overrightarrow{OB}$,點(diǎn)M滿足$\overrightarrow{OM}$=λ$\overrightarrow{OC}$,(λ∈R),且|$\overrightarrow{OC}$|•|$\overrightarrow{OM}$|=36,則$\overrightarrow{OM}$•$\overrightarrow{OA}$的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a>1,b>0,且a+2b=2,則$\frac{2}{a-1}+\frac{a}$的最小值為4($\sqrt{2}$+1).

查看答案和解析>>

同步練習(xí)冊(cè)答案