精英家教網 > 高中數學 > 題目詳情
20.已知x,y滿足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-3≤0\\ x≥0\\ y≥0\end{array}\right.$,則y+3x的最小值為2.

分析 由線性約束條件畫出可行域,結合圖象平移目標函數即可求出目標函數的最小值.

解答 解:畫出x,y滿足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-3≤0\\ x≥0\\ y≥0\end{array}\right.$的可行域,
由圖得當把3x+y=z平移到過點A(0,2)處,
目標函數z有最小值為:z=0+2=2.
故答案為:2.

點評 本題只是直接考查線性規(guī)劃問題,是一道較為簡單的送分題.近年來高考線性規(guī)劃問題高考數學考試的熱點,數形結合是數學思想的重要手段之一,是連接代數和幾何的重要方法.隨著要求數學知識從書本到實際生活的呼聲不斷升高,線性規(guī)劃這一類新型數學應用問題要引起重視.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

10.在平面直角坐標系內,區(qū)域M滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤1\end{array}$區(qū)域N滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤sinx\end{array}$則向區(qū)域M內投一點,落在區(qū)域N內的概率是( 。
A.$\frac{2}{π}$B.$\frac{π}{4}$C.2-$\frac{2}{π}$D.2-$\frac{π}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.某校為緩解高三學生的高考壓力,經常舉行一些心理素質綜合能力訓練活動,經過一段時間的訓練后從該年級800名學生中隨機抽取100名學生進行測試,并將其成績分為A、B、C、D、E五個等級,統(tǒng)計數據如圖所示(視頻率為概率),根據圖中抽樣調查的數據,回答下列問題:
(1)試估算該校高三年級學生獲得成績?yōu)锽的人數;
(2)若等級A、B、C、D、E分別對應100分、90分、80分、70分、60分,學校要求當學生獲得的等級成績的平均分大于90分時,高三學生的考前心理穩(wěn)定,整體過關,請問該校高三年級目前學生的考前心理穩(wěn)定情況是否整體過關?
(3)以每個學生的心理都培養(yǎng)成為健康狀態(tài)為目標,學校決定對成績等級為E的16名學生(其中男生4人,女生12人)進行特殊的一對一幫扶培訓,從按分層抽樣抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知$\overrightarrow a=(1,1)$,$\overrightarrow b=(1,0)$,則當$|{\overrightarrow a-t\overrightarrow b}|$取最小值時,實數t=1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.若圓C與y軸相切于點P(0,1),與x軸的正半軸交于A,B兩點,且|AB|=2,則圓C的標準方程是(  )
A.${(x+\sqrt{2})^2}+{(y+1)^2}=2$B.${(x+1)^2}+{(y+\sqrt{2})^2}=2$C.${(x-\sqrt{2})^2}+{(y-1)^2}=2$D.${(x-1)^2}+{(y-\sqrt{2})^2}=2$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應優(yōu)惠,標準如下:
消費次數第1次第2次第3次第4次≥5次
收費比例10.950.900.850.80
該公司從注冊的會員中,隨機抽取了100位統(tǒng)計他們的消費次數,得到數據如下:
消費次數1次2次3次4次5次
頻數60201055
假設汽車美容一次,公司成本為150元.根據所給數據,解答下列問題:
(Ⅰ)估計該公司一位會員至少消費兩次的概率;
(Ⅱ)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(Ⅲ)假設每個會員最多消費5次,以事件發(fā)生的頻率作為相應事件發(fā)生的概率,設該公司為一位會員服務的平均利潤為X元,求X的分布列和數學期望E(X).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.在區(qū)間[-4,1]上隨機地取一個實數x,若x滿足|x|<a的概率為$\frac{4}{5}$,則實數a的值為(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.設非零平面向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{c}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知函數f(x)=x3-ax在(-1,1)上單調遞減,則實數a的取值范圍為( 。
A.(1,+∞)B.[3,+∞)C.(-∞,1]D.(-∞,3]

查看答案和解析>>

同步練習冊答案