16.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積V=6cm3,表面積S=16+2$\sqrt{5}$cm2

分析 由三視圖可知:該幾何體為四棱柱:利用體積與表面積計算公式即可得出.

解答 解:由三視圖可知:該幾何體為四棱柱:
該幾何體的體積V=$\frac{1+2}{2}×2×2$=6cm3,
表面積S=$\frac{1+2}{2}×2×2$+2×2+1×2+2×2+$2×\sqrt{5}$=16+2$\sqrt{5}$cm2
故答案為:6,16+2$\sqrt{5}$.

點評 本題考查了四棱柱的三視圖、體積與表面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=2|x+1|+|x-3|.
(1)求不等式f(x)<5的解集;
(2)設(shè)g(x)=kx,若f(x)≥g(x)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若執(zhí)行如圖所示的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是(  )
A.k<18B.k<17C.k<16D.k<15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的表面積是( 。
A.$20+4\sqrt{5}$B.$12+4\sqrt{5}$C.$20+2\sqrt{5}$D.$12+2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e,D為右準(zhǔn)線上一點.
(1)若e=$\frac{1}{2}$,點D的橫坐標(biāo)為4,求橢圓的方程;
(2)設(shè)斜率存在的直線l經(jīng)過點P($\frac{3a}{4}$,0),且與橢圓交于A,B兩點.若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OD}$,DP⊥l,求橢圓離心率e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在矩形ABCD中,對角線AC,BD相交于點O,E為BO的中點,若$\overrightarrow{AE}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ為實數(shù)),則λμ=$\frac{3}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.司機在開機動車時使用手機是違法行為,會存在嚴(yán)重的安全隱患,危及自己和他人的生命.為了研究司機開車時使用手機的情況,交警部門調(diào)查了100名機動車司機,得到以下統(tǒng)計:在55名男性司機中,開車時使用手機的有40人,開車時不使用手機的有15人;在45名女性司機中,開車時使用手機的有20人,開車時不使用手機的有25人.
(Ⅰ)完成下面的2×2列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為開車時使用手機與司機的性別有關(guān);
開車時使用手機開車時不使用手機合計
男性司機人數(shù)
女性司機人數(shù)
合計
(Ⅱ)以上述的樣本數(shù)據(jù)來估計總體,現(xiàn)交警部門從道路上行駛的大量機動車中隨機抽檢3輛,記這3輛車中司機為男性且開車時使用手機的車輛數(shù)為X,若每次抽檢的結(jié)果都相互獨立,求X的分布列和數(shù)學(xué)期望E(X).
參考公式與數(shù)據(jù):${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(Χ2≥k00.1500.1000.0500.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在德國不萊梅舉行的第48屆世乒賽期間,某商場櫥窗里用同樣的乒乓球堆成若干堆“正三棱錐”形的展品,其中第一堆只有一層,就一個乒乓球;第2、3、4、…堆最底層(第一層)分別按圖所示方式固定擺放.從第一層開始,每層的小球自然壘放在下一層之上,第n堆第n層就放一個乒乓球,以f(n)表示第n堆的乒乓球總數(shù),則f(3)=10;f(n)=$\frac{1}{6}$n(n+1)(n+2)(答案用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義運算$|\begin{array}{l}{a}&{c}\\&exsceor\end{array}|$=ad-bc,復(fù)數(shù)z滿足$|\begin{array}{l}{z}&{i}\\{1}&{i}\end{array}|$=1+i,$\overline{z}$為z的共軛復(fù)數(shù),則$\overline{z}$=2+i.

查看答案和解析>>

同步練習(xí)冊答案