6.“-1≤x≤2”是“x2-x-2=0”的( 。
A.充分不必要條件B.必要不充分條件
C.沖要條件D.既不充分也不必要條件

分析 解方程,求出方程的根,根據(jù)充分必要條件的定義判斷即可.

解答 解:由x2-x-2=0,解得:x=2或x=-1,
故“-1≤x≤2”是“x2-x-2=0”的必要不充分條件,
故選:B.

點評 本題考查了充分必要條件的定義,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若拋物線y2=8x的焦點恰好是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{3}=1(a>0)$的右焦點,則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在四棱錐P-ABCD中,底面ABCD為矩形,AP⊥平面PCD,E,F(xiàn)分別為PC,AB的中點.求證:
(1)平面PAD⊥平面ABCD;
(2)EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=x+lg(x-2)的零點所在區(qū)間為( 。
A.(2,2.0001)B.(2.0001,2.001)C.(2.001,2.01)D.(2.01,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊sin2B=2sinAsinC,a=b
(1)求cosA
(2)若a=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)命題p:?x0∈(0,+∞),lnx0=-1.
命題q:若m>1,則方程x2+my2=1表示焦點在x軸上的橢圓.
那么,下列命題為真命題的是( 。
A.¬qB.(¬p)∨(¬q)C.p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,點($\sqrt{2}$,$\frac{1}{2}$)在橢圓上.
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)斜率為1的直線l,交橢圓M于不同的點A,B兩點,若以線段AB為直徑的圓經(jīng)過原點O.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合M={ b,1},N={ c,1,2},M⊆N,若b,c∈{2,3,4,5,6,7,8,9}則方程x2+bx+c=0有實根的概率為(  )
A.$\frac{5}{7}$B.$\frac{4}{7}$C.$\frac{3}{7}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=ax-1(a>0且a≠1)恒過的定點坐標(biāo)為(0,0).

查看答案和解析>>

同步練習(xí)冊答案