已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且截拋物線的準(zhǔn)線所得弦長(zhǎng)為,傾斜角為的直線過點(diǎn).
(Ⅰ)求該橢圓的方程;
(Ⅱ)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問拋物線上是否存在一點(diǎn),使得與關(guān)于直線對(duì)稱,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
(Ⅰ);(Ⅱ)拋物線上存在一點(diǎn),使得與關(guān)于直線對(duì)稱.
(Ⅱ)∵ 傾斜角為的直線過點(diǎn),
∴ 直線的方程為,即,………………………7分
由(Ⅰ)知橢圓的另一個(gè)焦點(diǎn)為,設(shè)與關(guān)于直線對(duì)稱,則得 , ………………………………………9分
解得,即, ………………………………………11分
又滿足,故點(diǎn)在拋物線上。所以拋物線上存在一點(diǎn),使得與關(guān)于直線對(duì)稱。 ………………………………13分
考點(diǎn):直線與圓錐曲線的綜合問題;橢圓的標(biāo)準(zhǔn)方程;拋物線的簡(jiǎn)單性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在正方體ABCD-A1B1C1D1中,O是底面ABCD的中點(diǎn),M、N分別是棱DD1、D1C1的中點(diǎn),則直線OM
A.是AC和MN的公垂線
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.與AC、MN都不垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,A地到火車站共有兩條路徑L1和L2,現(xiàn)隨機(jī)抽取100位從A地到達(dá)火車站的人進(jìn)行調(diào)查,調(diào)查結(jié)果如下:
所用時(shí)間(分鐘) | 10~20 | 20~30 | 30~40 | 40~50 | 50~60 |
選擇L1的人數(shù) | 6 | 12 | 18 | 12 | 12 |
選擇L2的人數(shù) | 0 | 4 | 16 | 16 | 4 |
(1)試估計(jì)40分鐘內(nèi)不能趕到火車站的概率;
(2)分別求通過路徑L1和L2所用時(shí)間落在上表中各時(shí)間段內(nèi)的頻率;
(3)現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于趕往火車站,為了盡最大可能在允許的時(shí)間內(nèi)趕到火車站,試通過計(jì)算說明,他們應(yīng)如何選擇各自的路徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
規(guī)定表示不超過的最大整數(shù),例如:[3.1]=3,[2.6]=3,[2]=2;若是函數(shù)導(dǎo)函數(shù),設(shè),則函數(shù)的值域是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,過圓O外一點(diǎn)P分別作圓的切線和割線交圓于A,B,且PB = 7, C是圓上一點(diǎn)使得BC = 5,,則AB =____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).若,則的取值范圍是( )
A、. B.C、D、
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com