5.在△ABC中,已知$\frac{a}{tanA}=\frac{tanB}$,則△ABC的形狀是等腰三角形.

分析 由已知利用正弦定理可求cosA=cosB,利用余弦函數(shù)y=cosx在[0,π]上單調(diào)遞減,可直接得到A=B,從而可求三角形為等腰三角形.

解答 解:在△ABC中,∵$\frac{a}{tanA}=\frac{tanB}$,$\frac{a}{sinA}=\frac{sinB}$,
∴cosA=cosB,
∵A∈(0,π),B∈(0,π),余弦函數(shù)y=cosx在[0,π]上單調(diào)遞減,
∴A=B,
則△ABC為等腰三角形;
故答案為:等腰.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦函數(shù)的單調(diào)性,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y-4≤0}\end{array}\right.$,若對(duì)于任意b∈[0,1],不等式ax-by>b恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{2}{3}$,4)B.($\frac{2}{3}$,+∞)C.(2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=2,AB=AE=1,M為矩形AEHD內(nèi)一點(diǎn),若∠MGF=∠MGH,MG和平面EFGH所成角的正切值為$\frac{1}{2}$,則點(diǎn)M到平面EFGH的距離為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{5}}{5}$.
(1)求sin($\frac{π}{4}$+α)的值;
(2)(理科)求cos($\frac{5π}{6}$-2α)的值.
(文科)求cos2α+sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某城市一個(gè)交通路口原來(lái)只設(shè)有紅綠燈,平均每年發(fā)生交通事故80起,案件的破獲率為70%.為了加強(qiáng)該路口的管理,第二年在該路口設(shè)置了電子攝像頭,該年發(fā)生交通事故70起,共破獲了56起,第三年的白天安排了交警執(zhí)勤,該年發(fā)生交通事故60起,破獲了54起.
(1)根據(jù)以上材料分析,加強(qiáng)管理后的兩年該路口的交通狀況發(fā)生了怎樣的變化
(2)試采用獨(dú)立性檢驗(yàn)進(jìn)行分析,電子攝像頭和白天的民警執(zhí)勤對(duì)該路口交通肇事案件的破獲分別產(chǎn)生了什么樣的影響.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.中國(guó)古代有計(jì)算多項(xiàng)式值的秦九韶算法,如圖是實(shí)現(xiàn)該算法的程序框圖,執(zhí)行該程序框圖,若輸入的x=3,n=2,依次輸入的a為2,2,5,則輸出的s=(  )
A.8B.17C.29D.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖所示,三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,AB=1,BC=PA=2,則該幾何體外接球的表面積為( 。
A.B.C.12πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)$f(x)=sinxcos({x+\frac{π}{6}})+1$.
(Ⅰ)求函數(shù)f(x)的最大值及取得最大值時(shí)的x的集合;
(Ⅱ)△ABC中,a,b,c分別是A,B,C的對(duì)邊,$f(C)=\frac{5}{4},b=2,\overrightarrow{AC}•\overrightarrow{BC}=12$,求邊長(zhǎng)c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\vec a$與$\vec b$的夾角為$\frac{2π}{3}$,$|\vec a|=\sqrt{2}$,則$\vec a$在$\vec b$方向上的投影為$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案