求函數(shù)y=log3(x2-4x+7)的值域.
考點(diǎn):對(duì)數(shù)函數(shù)的值域與最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=log3[(x-2)2+3],設(shè)t=(x-2)2+3,則t≥3,轉(zhuǎn)化為:g(t)=log
 
t
3
,t∈[3,+∞)求解.
解答: 解:∵函數(shù)y=log3(x2-4x+7),
∴函數(shù)y=log3[(x-2)2+3],
設(shè)t=(x-2)2+3,則t≥3,
∴函數(shù)y=log3(x2-4x+7)轉(zhuǎn)化為;g(t)=log
 
t
3
,t∈[3,+∞)
∵g(t)單調(diào)遞增,∴g(x)≥log
 
3
3
=1,
故函數(shù)y=log3(x2-4x+7)的值域?yàn)椋篬1,+∞)
點(diǎn)評(píng):本題考查了對(duì)數(shù)函數(shù),指數(shù)函數(shù)的單調(diào)性,屬于容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

方程
x
=log2x解的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+x+a在區(qū)間[1,3]上的圖象總在x軸的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一直角梯形ABCD中,AB∥CD,AB>CD,S是直角梯形ABCD所在平面外一點(diǎn),畫出平面SBD和平面SAC的交線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x2+y2+xy=1,求x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x),對(duì)于任意的m、n∈(0,+∞)都有f(mn)=f(m)+f(n)成立,且當(dāng)x>1時(shí),f(x)<0.
(1)計(jì)算f(1);
(2)證明函數(shù)y=f(x)在(0,+∞)上時(shí)單調(diào)函數(shù);
(3)比較f(
m+n
2
)與
f(m)+f(n)
2
的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)镽,滿足f(x)=-f(-x),且x>0時(shí),f(x)=2x-x2
(1)求f(x)的解析式;
(2)是否存在正數(shù)m、n,當(dāng)x∈[m,n]時(shí),g(x)=f(x),且g(x)的值域?yàn)閇
1
n
1
m
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b
,
c
滿足
a
+2
b
+3
c
=
0
,且(
a
-2
b
)⊥
c
.若|
a
|=1,則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù) f(x)=2sin(
2x
3
+
π
6
)-1,
(1)當(dāng)x∈[0,π],求f(x)的值域;   
(2)當(dāng)x∈[0,π],求f(x)的增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案