【題目】已知函數(shù),

求證:恒成立;

,若,求證:

【答案】(1)證明見解析(2)證明見解析

【解析】

(1)先對不等式左邊進行化簡整理,然后將整理后的表達式設(shè)為函數(shù),對函數(shù)進行一階導數(shù)和二階導數(shù)的分析,得到上單調(diào)遞增,則當時,命題得證.

(2)先對整理后的進行一階導數(shù)的分析,畫出函數(shù)大致圖象,可知,然后采用先取對數(shù)然后作差的方法比較大小,關(guān)鍵是構(gòu)造對數(shù)平均數(shù),利用對數(shù)平均不等式即可證明.

證明:由題意,可知

,

,

時,,

上單調(diào)遞增.

時,,

上單調(diào)遞增.

時,

故命題得證.

由題意,,

,解得

,解得

,解得

上單調(diào)遞減,在上單調(diào)遞增,

處取得極小值

大致圖象如下:

根據(jù)圖,可知,

,,

根據(jù)對數(shù)平均不等式,有

,

,

故得證.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且以,為焦點,橢圓的離心率為.

1)求實數(shù)的值;

2)過左焦點的直線與橢圓相交于、兩點,為坐標原點,問橢圓上是否存在點,使線段和線段相互平分?若存在,求出點的坐標,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=exax1,aR

1)當a2時,求函數(shù)fx)的單調(diào)性;

2)設(shè)a≤0,求證:x≥0時,fxx2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓,離心率,短軸,拋物線頂點在原點,以坐標軸為對稱軸,焦點為

(1)求橢圓和拋物線的方程;

(2)設(shè)坐標原點為,為拋物線上第一象限內(nèi)的點,為橢圓是一點,且有,當線段的中點在軸上時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為我國數(shù)學家趙爽3世紀初在為《周髀算經(jīng)》作注時驗證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個小區(qū)域涂色,規(guī)定每個區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,底面是邊長為的正三角形,點在底面上的射影恰是的中點,側(cè)棱和底面成角.

1)若為側(cè)棱上一點,當為何值時,;

2)求二面角的余弦值大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點E為正方形ABCDCD上異于點C、D的動點,將△ADE沿AE翻折成△SAE,在翻折過程中,下列三個說法中正確的個數(shù)是(

①存在點E和某一翻折位置使得AE∥平面SBC;

②存在點E和某一翻折位置使得SA⊥平面SBC;

③二面角SABE的平面角總是小于2SAE

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)定義:設(shè)是非零實常數(shù),若對于任意的,都有,則稱函數(shù)為“關(guān)于的偶型函數(shù)”

1)請以三角函數(shù)為例,寫出一個“關(guān)于2的偶型函數(shù)”的解析式,并給予證明

2)設(shè)定義域為的“關(guān)于的偶型函數(shù)”在區(qū)間上單調(diào)遞增,求證在區(qū)間上單調(diào)遞減

3)設(shè)定義域為的“關(guān)于的偶型函數(shù)”是奇函數(shù),若,請猜測的值,并用數(shù)學歸納法證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形幾何圖形,由波蘭數(shù)學家謝爾賓斯基在1915年提出,它是一個自相似的例子,其構(gòu)造方法是:

1)取一個實心的等邊三角形(圖1);

2)沿三邊中點的連線,將它分成四個小三角形;

3)挖去中間的那一個小三角形(圖2);

4)對其余三個小三角形重復(1)(2)(3)(4)(圖3.

制作出來的圖形如圖4,….

若圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案