【題目】現(xiàn)定義:設(shè)是非零實(shí)常數(shù),若對(duì)于任意的,都有,則稱函數(shù)為“關(guān)于的偶型函數(shù)”

1)請(qǐng)以三角函數(shù)為例,寫出一個(gè)“關(guān)于2的偶型函數(shù)”的解析式,并給予證明

2)設(shè)定義域?yàn)榈摹瓣P(guān)于的偶型函數(shù)”在區(qū)間上單調(diào)遞增,求證在區(qū)間上單調(diào)遞減

3)設(shè)定義域?yàn)?/span>的“關(guān)于的偶型函數(shù)”是奇函數(shù),若,請(qǐng)猜測(cè)的值,并用數(shù)學(xué)歸納法證明你的結(jié)論

【答案】1,答案不唯一(2)證明見解析(3,證明見解析

【解析】

1)令,由于,則可證明;

2)根據(jù)題意可知,再根據(jù)函數(shù)的單調(diào)性即可證明;

3)由題得,可得結(jié)合數(shù)學(xué)歸納法得到,即可得證.

1,

為“關(guān)于2的偶型函數(shù)”.

2.

任取,因?yàn)楹瘮?shù)在單調(diào)遞增,所以.所以函數(shù)在上單調(diào)遞減

3)猜測(cè)數(shù)學(xué)歸納法證明:

1.當(dāng)時(shí)因?yàn)?/span>是奇函數(shù),所以得證

2.假設(shè)當(dāng)成立,

因?yàn)?/span>,

又∵奇函數(shù),∴

∴當(dāng)時(shí),,所以得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,右焦點(diǎn)到直線的距離為1

求橢圓的標(biāo)準(zhǔn)方程;

P為橢圓上的一點(diǎn)點(diǎn)P不在y軸上,過點(diǎn)OOP的垂線交直線于點(diǎn)Q,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

求證:對(duì)恒成立;

,若,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且

1)求A

2)若,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生態(tài)農(nóng)莊有一塊如圖所示的空地,其中半圓O的直徑為300米,A為直徑延長線上的點(diǎn),米,B為半圓上任意一點(diǎn),以AB為一邊作等腰直角,其中BC為斜邊.

;,求四邊形OACB的面積;

現(xiàn)決定對(duì)四邊形OACB區(qū)域地塊進(jìn)行開發(fā),將區(qū)域開發(fā)成垂釣中心,預(yù)計(jì)每平方米獲利10元,將區(qū)域開發(fā)成親子采摘中心,預(yù)計(jì)每平方米獲利20元,則當(dāng)為多大時(shí),垂釣中心和親子采摘中心獲利之和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)當(dāng)時(shí),解不等式;

2)已知是以2為周期的偶函數(shù),且當(dāng)時(shí),有.,且,求函數(shù)的反函數(shù);

3)若在上存在個(gè)不同的點(diǎn),,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.

(1)求證:平面;

(2)點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線和曲線,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.

(1)求曲線和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)是曲線上一動(dòng)點(diǎn),過點(diǎn)作線段的垂線交曲線于點(diǎn),求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構(gòu)思提出后,某科技企業(yè)為抓住一帶一路帶來的機(jī)遇,決定開發(fā)生產(chǎn)一款大型電子設(shè)備.生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺(tái),需另投入成本萬元,當(dāng)年產(chǎn)量不足60臺(tái)時(shí),萬元;當(dāng)年產(chǎn)量不小于60臺(tái)時(shí),萬元若每臺(tái)設(shè)備售價(jià)為100萬元,通過市場(chǎng)分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.

求年利潤萬元關(guān)于年產(chǎn)量臺(tái)的函數(shù)關(guān)系式;

當(dāng)年產(chǎn)量為多少臺(tái)時(shí),該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案
闁稿骏鎷� 闂傚偊鎷�