【題目】如圖所示,在四棱錐E﹣ABCD中,底面ABCD是菱形,∠ADC=60°,AC與BD交于點O,EC⊥底面ABCD,F為BE的中點,AB=CE=2.
(1)求證:DE∥平面ACF;
(2)求異面直線EO與AB所成角的余弦值;
【答案】(1)見解析; (2).
【解析】
(1) 利用中位線證明 OF∥DE即可.
(2)以為空間坐標系原點進行建系,再求得與,利用向量夾角的運算進行求解即可.
(1)證明:連結(jié)OF,
∵在四棱錐E﹣ABCD中,底面ABCD是菱形,∠ADC=60°,AC與BD交于點O,
∴O是BD中點,∵F為BE的中點,∴OF∥DE,
∵DE平面ACF,OF平面ACF,
∴DE∥平面ACF.
(2)解:以O為原點,OD為x軸,OA為y軸,過O作平面ABCD的垂線為z軸,建立空間直角坐標系,
則E(0,﹣1,2),O(0,0,0),A(0,1,0),B(,0,0),
(0,﹣1,2),(,﹣1,0),
設(shè)異面直線EO與AB所成角為θ,則cosθ.
∴異面直線EO與AB所成角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)是否存在,使得在區(qū)間的最小值為且最大值為1?若存在,求出的所有值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知二次函數(shù)(、、均為實常數(shù),)的最小值是0,函數(shù)的零點是和,函數(shù)滿足,其中,為常數(shù).
(1)已知實數(shù)、滿足、,且,試比較與的大小關(guān)系,并說明理由;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
交付金額(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機抽取1人,估計該學(xué)生上個月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,設(shè)點集,令.從集合Mn中任取兩個不同的點,用隨機變量X表示它們之間的距離.
(1)當n=1時,求X的概率分布;
(2)對給定的正整數(shù)n(n≥3),求概率P(X≤n)(用n表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com