考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由a
n=
π-
得到a
n+3,代入
可得數(shù)列{b
n}是等比數(shù)列,公比為1;
(2)對(duì)x分類求解數(shù)列{c
n}的前n項(xiàng)和S
n,當(dāng)x=0時(shí),數(shù)列{c
n}為常數(shù)列0,0,0,…;當(dāng)x=1時(shí),數(shù)列{c
n},為非0常數(shù)列;當(dāng)x≠0且x≠1時(shí),由等比數(shù)列的前n項(xiàng)和得答案.
解答:
(1)證明:∵a
n=
π-
,
∴
an+3=-=-+π,
∴
sinan+3=sin(-+π)=sin(-)=sinan,
又b
n=sina
n•sina
n+2,
∴b
1=sina
1•sina
3=sin
•sin
=
.
=sinan+1•sinan+3 |
sinan•sinan+2 |
==1.
∴數(shù)列{b
n}是等比數(shù)列,公比為1.
∴
bn=;
(2)解:由c
n=b
nx
n=
xn,
當(dāng)x=0時(shí),c
n=0,
∴S
n=0;
當(dāng)x=1時(shí),
cn=,
∴
Sn=n;
當(dāng)x≠0且x≠1時(shí),{c
n}為等比數(shù)列,且公比q=x,
∴
Sn=•.
點(diǎn)評(píng):本題考查了三角函數(shù)的誘導(dǎo)公式,考查了等比數(shù)列的確定,考查了等比數(shù)列的前n項(xiàng)和公式,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.