【題目】試比較3-與(n為正整數(shù))的大小,并予以證明.
【答案】見解析
【解析】
利用作差法可得3--=,確定3-與的大小關(guān)系等價于比較與2n+1的大小,利用數(shù)學歸納法證明即可.
證明:3--=,
于是確定3-與的大小關(guān)系等價于比較與2n+1的大。
由2<2×1+1,<2×2+1,>2×3+1,>2×4+1,>2×5+1,
可猜想當n≥3時,>2n+1,
證明如下:
ⅰ當n=3時,由上可知顯然成立.
ⅱ假設當n=k時,>2k+1成立.
那么,當n=k+1時,
=2×>2(2k+1)=4k+2=2(k+1)+1+(2k-1)>2(k+1)+1,
所以當n=k+1時猜想也成立,
綜合ⅰ和ⅱ,對一切n≥3的正整數(shù),都有>2n+1.
所以當n=1,2時,3-<;
當n≥3時,3->(n為正整數(shù)).
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中,.
(1)當時,討論函數(shù)的單調(diào)性;
(2)若函數(shù)僅在處有極值,求的取值范圍;
(3)若對于任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,過的直線與交于,兩點,點的坐標為.當軸時,的面積為.
(1)求橢圓的標準方程;
(2)設直線、的斜率分別為、,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù),當.
(Ⅰ)求出函數(shù)在上的解析式;
(Ⅱ)在答題卷上畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;
(Ⅲ)若關(guān)于的方程有三個不同的解,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(江淮十校2017屆高三第一次聯(lián)考文數(shù)試題第7題)《九章算術(shù)》是我國古代數(shù)學成就的杰出代表作,其中《方田》章計算弧田面積所用的經(jīng)驗公式為:弧田面積=1/2(弦矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,半徑等于4米的弧田.按照上述方法計算出弧田的面積約為( )
A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合,其中是復數(shù),若集合中任意兩數(shù)之積及任意一個數(shù)的平方仍是中的元素,則集合___________________;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“圓材埋壁”是《九章算術(shù)》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,學會一寸,鋸道長一尺,問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知道大小,用鋸取鋸它,鋸口深一寸,鋸道長一尺,問這塊圓柱形木材的直徑是多少?現(xiàn)有圓柱形木材一部分埋在墻壁中,截面如圖所示,已知弦尺,弓形高寸,則陰影部分面積約為(注:,,1尺=10寸)( )
A. 6.33平方寸B. 6.35平方寸
C. 6.37平方寸D. 6.39平方寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1所示,在梯形中,//,且,,分別延長兩腰交于點,點為線段上的一點,將沿折起到的位置,使,如圖2所示.
(1)求證:;
(2)若,,四棱錐的體積為,求四棱錐的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com