某商人將進貨單價為8元的某種商品按10元一個銷售時,每天可賣出100個,現(xiàn)在他采用提高售價,減少進貨量的辦法增加利潤,已知這種商品銷售單價每漲1元,銷售量就減少10個,問他將售價每個定為多少元時,才能使每天所賺的利潤最大?并求出最大值.

銷售單價應(yīng)為14元,最大利潤為360元


解析:

設(shè)每個提價為x元(x≥0),利潤為y元,每天銷售總額為(10+x)(100-10x)元,

進貨總額為8(100-10x)元,

顯然100-10x>0,即x<10,

則y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360 (0≤x<10).

當x=4時,y取得最大值,此時銷售單價應(yīng)為14元,最大利潤為360元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•資中縣模擬)某商人將進貨單價為8元的某種商品按10元一個銷售時,每天可賣出100個.現(xiàn)在他采用提高售價,減少進貨量的辦法增加利潤,已知這種商品銷售單價每漲1元,銷售量就減少10個,問他將售價每個定為多少元時,才能使每天所賺的利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商人將進貨單價為8元的某種商品按10元一個銷售時,每天可賣出100個,現(xiàn)在他采用提高售價,減少進貨量的辦法增加利潤,已知這種商品銷售單價每漲1元,銷售量就減少10個.問他將每個商品售價定為多 少元時,才能使每天的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:資中縣模擬 題型:解答題

某商人將進貨單價為8元的某種商品按10元一個銷售時,每天可賣出100個.現(xiàn)在他采用提高售價,減少進貨量的辦法增加利潤,已知這種商品銷售單價每漲1元,銷售量就減少10個,問他將售價每個定為多少元時,才能使每天所賺的利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省內(nèi)江市資中縣高考數(shù)學(xué)零診試卷(文科)(解析版) 題型:解答題

某商人將進貨單價為8元的某種商品按10元一個銷售時,每天可賣出100個.現(xiàn)在他采用提高售價,減少進貨量的辦法增加利潤,已知這種商品銷售單價每漲1元,銷售量就減少10個,問他將售價每個定為多少元時,才能使每天所賺的利潤最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案